版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.【2017课表1,文1】已知集合A=,B=,则AAB=BABCABDAB=R【答案】A【解析】【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理2.【2017课标 = 2 * ROMAN II,文1】设集合则 A. B. C. D. 【答案】A【解析】由题意,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴
2、、坐标系和Venn图3.【2017课标3,文1】已知集合A=1,2,3,4,B=2,4,6,8,则中元素的个数为( )A1B2C3D4【答案】B【解析】由题意可得: ,中元素的个数为2,所以选B.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图4.【2017天津,文1】设集合,则(A)(B)(C)(D)【答案】 【解析】试题分析:由题意可得:.本题选择
3、B选项.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017北京,文1】已知,集合,则(A) (B)(C) (D)【答案】C【解析】【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.6.【2017浙江,1】已知,则ABCD【答案】A【解析】
4、试题分析:利用数轴,取所有元素,得【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理7.【2017天津,文2】设,则“”是“”的(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】【解析】试题分析:,则,则, ,据此可知:“”是“”的的必要的必要不充分条件,本题选择B选项.【考点】充分必要条件【名师点睛】判断充分必要条件的的方法:1.根据定义,若,那么是的充分不必要条件,同时是的必要不充分条件,若,那互为充要条件,若,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若,若
5、,那么是的充分必要条件,同时是的必要不充分条件,若,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将是条件的判断,转化为是条件的判断.8.【2017山东,文1】设集合则 A. B. C. D. 【答案】C【解析】【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn图9.【2017山东,文5】已知命题p:;命题
6、q:若,则a0,解集在定义域内的部分为单调递增区间; = 4 * GB3 解不等式f(x)bc,则a+bc”是假命题的一组整数a,b,c的值依次为_【答案】-1,-2,-3(答案不唯一)【解析】试题分析:相矛盾,所以验证是假命题.【考点】不等式的性质【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法解答本题时利用赋值的方式举反例进行验证,答案不唯一23.【2017江苏,1】已知集合,若则实数的值为 .【答案】1【解析】由题意,显然,所以,此时,满足题意,故答案为1【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集
7、合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.24.【2017北京,文11】已知,且x+y=1,则的取值范围是_【答案】 【解析】【考点】二次函数【名师点睛】本题考查了转化与化归的能力,除了象本题的方法,转化为二次函数求取值范围,也可以转化为几何关系求取值范围,当,表示线段,那么的几何意义就是线段上的点到原点距离的平方,这样会更加简单.25.【2017课标3,文16】设函数则满足的x的取值范围是_
8、.【答案】 【解析】由题意得: 当时 恒成立,即;当时 恒成立,即;当时,即;综上x的取值范围是 . 【考点】分段函数解不等式【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.26.【2017山东,文14】已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当 时,则f(919)= .【答案】【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 = 1 * GB3 已知函数的奇偶性,求函数值将待求值利用奇偶
9、性转化为已知区间上的函数值求解 = 2 * GB3 已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式 = 3 * GB3 已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f(x)f(x)0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解 = 4 * GB3 应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性27.【2017江苏,1】已知集合,若则实数的值为 .【答案】1【解析】由题意,显然,所以,此时,满足题意,故答案为1【考
10、点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.28.【2017江苏,11】已知函数, 其中e是自然对数的底数. 若,则实数的取值范围是 .【答案】 【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具
11、体的不等式(组),此时要注意与的取值应在外层函数的定义域内29.【2017江苏,14】设是定义在且周期为1的函数,在区间上, 其中集合,则方程的解的个数是 .【答案】8【解析】由于 ,则需考虑 的情况在此范围内, 且 时,设 ,且 互质若 ,则由 ,可设 ,且 互质因此 ,则 ,此时左边为整数,右边非整数,矛盾,因此 因此方程解的个数为8个. 【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性
12、等1.【2017浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间2.【2017课标1,文14】曲线在点(1,2)处的切线方程为_【答案】【解析】【考点】导数几何意义【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及
13、斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为3.【2017天津,文10】已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为 .【答案】 【解析】【考点】导数的几何意义【名师点睛】本题考查了导数的几何意义,属于基础题型,函数在点处的导数的几何意义是曲线在点处的切线的斜率相应地,切线方程为注意:求曲线切线时,要分清在点处的切线与过点的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.4.【2017课标1,文21】已知函数=ex(exa)a2x(1)讨论的单调性;(2)若,求a的取值范
14、围【答案】(1)当,在单调递增;当,在单调递减,在单调递增;当,在单调递减,在单调递增;(2)【解析】试题分析:(1)分,分别讨论函数的单调性;(2)分,分别解,从而确定a的取值范围试题解析:(1)函数的定义域为,若,则,在单调递增若,则由得当时,;当时,所以在单调递减,在单调递增若,则由得当时,;当时,故在单调递减,在单调递增【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,有的正负,得出函数的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函
15、数极值或最值5.【2017课标 = 2 * ROMAN II,文21】设函数.(1)讨论的单调性;(2)当时,求的取值范围.【答案】()在 和单调递减,在单调递增() 【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对分类讨论,当a1时,满足条件;当时,取,当0a1时,取,.试题解析:(1) 令得 当时,;当时,;当时,所以在 和单调递减,在单调递增当时,取 综上,a的取值范围1,+) 【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相
16、应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.6.【2017课标3,文21】已知函数=lnx+ax2+(2a+1)x(1)讨论的单调性;(2)当a0时,证明【答案】(1)当时,在单调递增;当时,则在单调递增,在单调递减;(2)详见解析【解析】试题分析:(1)先求函数导数,再根据导函数符号变化情况讨论单调性:当时,则在单调递增,当时,则在单调递增,在单调递减.(2)证明,即证,而,所以目标函数为,即 (),利用导数易得,即得证.【考点】利用导数求单调性,利用导数证不等式【名师点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数
17、导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.7.【2017山东,文20】(本小题满分13分)已知函数.,( = 1 * ROMAN I)当a=2时,求曲线在点处的切线方程;( = 2 * ROMAN II)设函数,讨论的单调性并判断有无极值,有极值时求出极值.【答案】( = 1 * ROMAN I),(2)( = 2 * ROMAN II)无极值;极大值为,极小值为;极大值为,极小值为.【解析】试题分析:( = 1 * ROMAN I)根据
18、求出切线斜率,再用点斜式写出切线方程;( = 2 * ROMAN II)由,通过讨论确定单调性,再由单调性确定极值. (1)当时,当时,单调递增;当时,单调递减;当时,单调递增.所以,当时,取到极大值,极大值是,当时,取到极小值,极小值是.(2)当时,当时,单调递增;所以,在上单调递增,无极大值也无极小值.(3)当时,当时,单调递增;当时,单调递减;当时,函数在和上单调递增,在上单调递减,函数既有极大值,又有极小值,极大值是,极小值是.【考点】导数的几何意义及导数的应用【名师点睛】(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;检验
19、f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.8.【2017天津,文19】设,.已知函数,.()求的单调区间;()已知函数和的图象在公共点(x0,y0)处有相同的切线,(i)求证:在处的导数等于0;(ii)若关于x的不等式在区间上恒成立,求b的取值范围.【答案】()递增区间为,递减区间为.(2)()在处的导数等于0.()的取值范围是.【解析】试题分析:()先求函数的导数 ,再根据,求得两个
20、极值点的大小关系,再分析两侧的单调性,求得函数的单调区间;()()根据与有共同的切线,根据导数的几何意义建立方程,求得,得证;()将不等式转化为,再根据前两问可知是极大值点,由(I)知在内单调递增,在内单调递减,从而在上恒成立,得,再根据导数求函数的取值范围.(II)(i)因为,由题意知,所以,解得.所以,在处的导数等于0.(ii)因为,由,可得.又因为,故为的极大值点,由(I)知.另一方面,由于,故,由(I)知在内单调递增,在内单调递减,故当时,在上恒成立,从而在上恒成立.由,得,.令,所以,令,解得(舍去),或.因为,故的值域为.所以,的取值范围是.【考点】1.导数的几何意义;2.导数求函
21、数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出 ,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能.9.【2017北京,文20】已知函数()求曲线在点处的切线方程;()求函数在区间上的最大值和最小值【答案】();()最大值1;最小值.【解析】()设,则.当时,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上
22、的最大值为,最小值为.【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为不能判断函数的单调性,所以需要再求一次导数,设 ,再求,一般这时就可求得函数的零点,或是恒成立,这样就能知道函数的单调性,根据单调性求最值,从而判断的单调性,求得最值.10.【2017江苏,20】 已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值) (1)求关于 的函数关系式,并写出定义域; (2)证明:; (3)若,这两个函数的所有极值之和不小于,求的取值范围.【答案】(1)(2)见解
23、析(3)列表如下x+00+极大值极小值故的极值点是.从而,因此,定义域为.(3)由(1)知,的极值点是,且,.从而记,所有极值之和为,因为的极值为,所以,.因为,于是在上单调递减.因为,于是,故.因此a的取值范围为.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.1.【2017课标1,文11】ABC的内角A、B、C的对边分别为a、b、c已知
24、,a=2,c=,则C=ABCD【答案】B【解析】【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到2.【2017课标3,文6】函数的最大值为( )A B1C D 【答案】A【解析】由诱导公式可得: ,则: ,函数的最大值为 .所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的
25、形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征3.【2017课标 = 2 * ROMAN II,文3】函数的最小正周期为A. B. C. D. 【答案】C 4.【2017课标3,文4】已知,则=( )A BC D【答案】A【解析】 .所以选A.【考点】二倍角正弦公式【名师点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换
26、”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.5. 【2017山东,文4】已知,则A. B. C. D.【答案】D【解析】试题分析:由得,故选D.【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点6.【2017天津,文7】设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)【答案】 【解析】【考点】三角函数的性质【名师点睛】本题考查了的解析式,和三角函数的图象和性质,本题叙述方式新颖
27、,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当时,满足题意,不合题意,B选项错误;,不合题意,C选项错误;,满足题意;当时,满足题意;,不合题意,D选项错误.本题选择A选项.7.【2017山东,文7】函数 最小正周期为A. B. C. D. 【答案】C【解析】试题分析:因为,所以其周期,故选C. 【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:利用周期函数的定义利用公式:yAsin(x)和yAcos(x)的最小正周期为eq f(2,|),ytan(x)的最小正周期为eq f(,|). = 3 * GB3 对于形如的函数,一般先把其化为的形式再求周
28、期.8【2017浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积, 【答案】【解析】【考点】数学文化【名师点睛】本题粗略看起来文字量大,其本质为将正六边形分割为6个等边三角形,确定6个等边三角形的面积,其中对文字信息的读取及提取有用信息方面至关重要,考生面对这方面题目时应多加耐心,仔细分析题目中所描述问题的本质,结合所学进行有目的的求解9.【2017浙江,13】已知ABC,AB=AC=4,BC=2点D为AB延长线上一点,BD=
29、2,连结CD,则BDC的面积是_,cosBDC=_【答案】【解析】试题分析:取BC中点E,DC中点F,由题意:,ABE中,又,综上可得,BCD面积为,【考点】解三角形【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解10.【2017北京,文9】在平面直角坐标系xOy中,角与角均以Ox为始边,它们
30、的终边关于y轴对称.若sin=,则sin=_【答案】 【解析】【考点】诱导公式【名师点睛】本题考查了角的对称的关系,以及诱导公式,常用的一些对称关系包含,与关于轴对称,则 ,若与关于 轴对称,则 ,若与关于原点对称,则 ,11.【2017课标3,文15】ABC的内角A,B,C的对边分别为a,b,c.已知C=60,b=,c=3,则A=_.【答案】75【解析】由题意: ,即 ,结合 可得 ,则.【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求
31、,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.12.【2017北京,文7】设m, n为非零向量,则“存在负数,使得m=n”是“mn0”是“S4 + S62S5”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】C【解析】【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前项和公式,通过公式的套入与简单运算,可知, 结合充分必要性的判断,若,则是的充分条件,若,则是的必要条件,该题“”“”,故为充要条件8.【2017江苏,10】某公司一年购买某种货物600吨,每次购买吨,运费为
32、6万元/次,一年的总存储费用为万元,要使一年的总运费与总存储之和最小,则的值是 .【答案】30【解析】总费用,当且仅当,即时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 9.【2017江苏,9】等比数列的各项均为实数,其前项的和为,已知,则= .【答案】32【解析】当时,显然不符合题意;当时,解得,则.【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用
33、基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 10.【2017天津,文13】若a,则的最小值为 .【答案】 【解析】【考点】基本不等式求最值【名师点睛】本题使用了两次基本不等式,要注意两次使用的条件是不是能同时成立,基本不等式的常用形式包含, , 等,基本不等式可以证明不等式,也可以求最值,再求最值
34、时,注意“一正,二定,三相等”的条件,是不是能取得,否则就不能用其求最值,若是使用2次,更要注意两次使用的条件是不是能同时成立.11.【2017山东,文】若直线 过点(1,2),则2a+b的最小值为 .【答案】【解析】【考点】基本不等式12.【2017课标1,文17】记Sn为等比数列的前n项和,已知S2=2,S3=-6(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列【答案】(1);(2),证明见解析【解析】试题分析:(1)由等比数列通项公式解得,;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列试题解析:(1)设的公比为由题设可得 ,解得,故的通项公式为(
35、2)由(1)可得由于,故,成等差数列【考点】等比数列【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用但在应用性质时要注意性质的前提条件,有时需要进行适当变形 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法13.【2017课标 = 2 * ROMAN II,文17】已知等差数列的前项和为,等比数列的前项和为, (1)若 ,求的通项公式;(2)若,求.【答案】() QUOTE ;()当 QUOTE 时, QUOTE .当 QUOTE 时, QUOTE .【解析】试题分析:(1)根据等差数列
36、及等比数列通项公式,表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可,(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差前三项求和.(2)由 QUOTE 得 QUOTE .解得 QUOTE 当 QUOTE 时,由得 QUOTE ,则 QUOTE .当 QUOTE 时,由得 QUOTE ,则 QUOTE .【考点】等差、等比数列通项与求和【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等
37、比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.14.【2017课标3,文17】设数列满足.(1)求的通项公式;(2)求数列 的前项和.【答案】(1);(2)【解析】试题分析:(1)先由题意得时,再作差得,验证时也满足(2)由于,所以利用裂项相消法求和.(2)由(1),.【考点】数列通项公式,裂项法求和【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 (其中是各项均不为零的等差数列
38、,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.15.【2017山东,文19】(本小题满分12分)已知an是各项均为正数的等比数列,且. ( = 1 * ROMAN I)求数列an通项公式;( = 2 * ROMAN II)bn为各项非零的等差数列,其前n项和Sn,已知,求数列的前n项和.【答案】( = 1 * ROMAN I);( = 2 * ROMAN II) 【解析】试题分析:( = 1 * ROMAN I)列出关于的方程组,解方程组求基本量;( = 2 * ROMAN II)用错位相减法求和. 试题解析:( = 1 * ROM
39、AN I)设数列的公比为,由题意知, .又,解得,所以. ,又,两式相减得所以.【考点】等差数列的通项,错位相减法求和.【名师点睛】(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了方程的思想(2)用错位相减法求和时,应注意:在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式;若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解16.【2017天津,文16】电视台播放甲、乙两套
40、连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用,表示每周计划播出的甲、乙两套连续剧的次数.(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?【答案】()见解析()电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【解析】试题解析:()解:由已知,满足的数学关系式为即该二元一次不
41、等式组所表示的平面区域为图1中的阴影部分:()解:设总收视人次为万,则目标函数为.【考点】1.不等式组表示的平面区域;2.线性规划的实际问题.【名师点睛】本题主要考查简单线性规划解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求其关键是准确作出可行域,理解目标函数的意义常见的目标函数有:(1)截距型:形如.求这类目标函数的最值常将函数转化为直线的斜截式:,通过求直线的截距的最值间接求出的最值;(2)距离型:形如 ;(3)斜率型:形如,而本题属于截距形式,但要注意实际问题中的最优解是整数.17.【2017天津,文18】已知为等差数
42、列,前n项和为,是首项为2的等比数列,且公比大于0,.()求和的通项公式;()求数列的前n项和.【答案】().().【解析】试题分析:()设等差数列的首项为,公差为,等比数列的公比为,建立方程求解;()先求的通项,再求 ,再根据错位相减法求和.()解:设数列的前项和为,由,有,上述两式相减,得.得.所以,数列的前项和为.【考点】1.等差,等比数列;2.错位相减法求和.【名师点睛】重点说说数列求和的一些方法:本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求
43、和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和. 18.【2017北京,文15】已知等差数列和等比数列满足a1=b1=1,a2+a4=10,b2b4=a5()求的通项公式;()求和:【答案】() ;().【解析】试题分析:()设等差数列和等比数列的公差和公比分别为和,代入建立方程,求解;()若是等比数列,那依然是等比数列,并且公比是 ,根据等比数列求和.【考点】1.等比,等差数列;2.等比数列的前项和.【名师点睛】重点说说数列求和的一些方法:本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数
44、列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和. 19.【2017江苏,19】 对于给定的正整数,若数列满足 对任意正整数总成立,则称数列是“数列”.(1)证明:等差数列是“数列”;(2)若数列既是“数列”,又是“数列”,证明:是等差数列.【答案】(1)见解析(2)见解析【解析】证明:(1)因为是等差数列,设其公差为,则,从而,当时,所以,因此等差数列是“数列”. 【考点】等差数列定义及通项公式【名师点睛】证明为
45、等差数列的方法:(1)用定义证明:为常数);(2)用等差中项证明:;(3)通项法: 为的一次函数;(4)前项和法: 1.【2017课表1,文5】已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为ABCD【答案】D【解析】【考点】双曲线【名师点睛】本题考查圆锥曲线中双曲线的简单运算,属容易题由双曲线方程得,结合PF与x轴垂直,可得,最后由点A的坐标是(1,3),计算APF的面积2.【2017课标 = 2 * ROMAN II,文5】若,则双曲线的离心率的取值范围是A. B. C. D. 【答案】C【解析】由题意,因为,所以,则,故选C.【考点】双
46、曲线离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.【2017浙江,2】椭圆的离心率是ABCD【答案】B【解析】试题分析:,选B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等4.【2017课标 = 2 * ROMAN II,文12】过抛物线的焦点,且斜率为的直线交
47、于点(在轴上方), 为的准线,点在上且,则到直线的距离为 A. B. C. D. 【答案】C【考点】直线与抛物线位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.5.【2017课标1,文12】设A、B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是ABCD【答案】A【解析】试题分析:当,焦点在轴
48、上,要使C上存在点M满足,则,即,得;当,焦点在轴上,要使C上存在点M满足,则,即,得,故的取值范围为,选A【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论6.【2017课标3,文11】已知椭圆C:,(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为( )A B CD【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,
49、再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【2017天津,文5】已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为(A)(B)(C)(D)【答案】 【解析】试题分析:由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:,本题选择D选项. 【考点】双曲线方程【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题解题时要注意 SKIPIF 1 0 、 SKIPIF 1 0 、 SKIPIF 1 0 的关系 SKIPIF 1 0 ,否则很容易出现错误解本题首
50、先画图,掌握题中所给的几何关系,再结合双曲线的一些几何性质,得到的关系,联立方程,求得的值, 8.【2017天津,文12】设抛物线的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若,则圆的方程为 .【答案】【解析】【考点】1.抛物线的方程;2.圆的方程.【名师点睛】本题设计比较巧妙,考查了圆,抛物线的方程,同时还考查了向量数量积的坐标表示,本题只有一个难点,就是,会不会用向量的坐标表示,根据图象,可设圆心为,那么方程就是,若能用向量的坐标表示角,即可求得,问题也就迎刃而解了.9.【2017北京,文10】若双曲线的离心率为,则实数m=_【答案】2【解析】试题分析:
51、,所以 ,解得 .【考点】双曲线的方程和几何性质【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题解题时要注意 SKIPIF 1 0 、 SKIPIF 1 0 、 SKIPIF 1 0 的关系 SKIPIF 1 0)的一条渐近线方程为,则a= .【答案】5【解析】由双曲线的标准方程可得渐近线方程为: ,结合题意可得:.【考点】双曲线渐近线【名师点睛】1.已知双曲线方程求渐近线:2.已知渐近线 设双曲线标准方程3.双曲线焦点到渐近线距离为,垂足为对应准线与渐近线的交点.12.【2017江苏,8】 在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,其焦点是,
52、则四边形的面积是 .来源:Z*xx*k.Com【答案】【考点】双曲线渐近线【名师点睛】1.已知双曲线方程求渐近线:2.已知渐近线 设双曲线标准方程3,双曲线焦点到渐近线距离为,垂足为对应准线与渐近线的交点.13.【2017江苏,13】在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是 .【答案】 【解析】设,由,易得,由,可得或,由得P点在圆左边弧上,结合限制条件 ,可得点P横坐标的取值范围为.【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、
53、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14.【2017课标1,文20】设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程【答案】(1)1; (2)【解析】将代入得当,即时,从而由题设知,即,解得所以直线AB的方程为【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定
54、理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用15.【2017课标 = 2 * ROMAN II,文20】设O为坐标原点,动点M在椭圆C QUOTE 上,过M作x轴的垂线,垂足为N,点P满足(1)求点P的轨迹方程;(2)设点在直线上,且.证明过点P且垂直于OQ的直线 过C的左焦点F. 【答案】(1) QUOTE (2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证 QU
55、OTE ,先设 P(m,n),则需证,根据条件可得,而 QUOTE ,代入即得.(2)由题意知F(-1,0),设Q(-3,t),P(m,n),则 QUOTE , QUOTE .由 QUOTE 得,又由(1)知 QUOTE ,故.所以 QUOTE ,即 QUOTE .又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果
56、,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.16.【2017课标3,文20】在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.【答案】(1)不会;(2)详见解析【解析】试题分析:(1)设,由ACBC得;由韦达定理得,矛盾,所以不存在(2)可设圆方程为,因为过,所以 ,令 得,即弦长为3.令得,所以过A,B,C三点的圆在y轴上截得的弦长为,所以所以过A,B,C三点的圆在y轴上截得的弦长为定值解法2:设过A,B,C三点的圆与y轴的另一个交点为
57、D,由可知原点O在圆内,由相交弦定理可得,又,所以,所以过A,B,C三点的圆在y轴上截得的弦长为,为定值.【考点】圆一般方程,圆弦长【名师点睛】:直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形代数方法:运用根与系数的关系及弦长公式: (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题17.【2017山东,文21】(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:(ab0)的离心率为,椭圆C截直线y=1所得线段的长度为.()求椭圆C的方程;()动直线l:y=kx+m(m0)交椭圆C于A,B两
58、点,交y轴于点M.点N是M关于O的对称点,圆N的半径为|NO|. 设D为AB的中点,DE,DF与圆N分别相切于点E,F,求EDF的最小值.【答案】();()的最小值为.【解析】 ,确定,所以,由此可得的最小值为的最小值为.()设,联立方程得,由 得 (*)且 ,因此 ,所以 ,又 ,所以 整理得: ,因为 所以 令 故 所以 .令 ,所以 .当时,,设,则 ,所以得最小值为.从而的最小值为,此时直线的斜率时.综上所述:当,时,取得最小值为.【考点】圆与椭圆的方程、直线与圆锥曲线的位置关系、【名师点睛】圆锥曲线中的两类最值问题:涉及距离、面积的最值以及与之相关的一些问题;求直线或圆锥曲线中几何元
59、素的最值以及这些元素存在最值时确定与之有关的一些问题常见解法:几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解18.【2017天津,文20】已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为.(I)求椭圆的离心率;(II)设点在线段上,延长线段与椭圆交于点,点,在轴上,且直线与直线间的距离为,四边形的面积为.(i)求直线的斜率;(ii)求椭圆的方程.【答案】() ()() ()【解析】试题解析:()解:设椭圆的离心率为e.由已知,可
60、得.又由,可得,即.又因为,解得.所以,椭圆的离心率为.()()依题意,设直线FP的方程为,则直线FP的斜率为.由()知,可得直线AE的方程为,即,与直线FP的方程联立,可解得,即点Q的坐标为.由已知|FQ|=,有,整理得,所以,即直线FP的斜率为.【考点】1.椭圆方程;2.椭圆的几何性质;3.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,是一道难题重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用 SKIPIF 1 0 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再求解过程逐步发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【水利水电】李想 教材精讲班教案 64-第10章-10.2-工程合同管理(一)
- 教育行业地理标志转让合同
- 教育人工智能硬件采购合同
- 承销协议承销商与发行人之间关于证券承销的合同
- 娱乐场所演出活动组织合同
- 产业孵化基地入住协议-合同范本
- 广告活动赞助合同样本
- 旅行团用餐合同
- 广告投放代理合同
- 建筑工程项目清包合同协议
- 高中开学第一次家长会 课件(共62张PPT)
- 【三级联动】2020实验室安全责任追究制度-学校自查项
- 普通话课件(完整版)
- 家长教育心得课件
- 神奇的植物王国
- 大豆种子买卖合同
- 加入中国民主促进会申请书
- 大学生恋爱观问卷调查报告
- 最新深静脉穿刺置管术(颈内、锁骨下、股静脉)含解剖图谱
- GB/T 6892-2000工业用铝及铝合金热挤压型材
- GB/T 6462-2005金属和氧化物覆盖层厚度测量显微镜法
评论
0/150
提交评论