2003年考研数学试题解析_第1页
2003年考研数学试题解析_第2页
2003年考研数学试题解析_第3页
2003年考研数学试题解析_第4页
2003年考研数学试题解析_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE PAGE 572003年考研数学(一)试题解析填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) = .【分析】 型未定式,化为指数函数或利用公式=进行计算求极限均可.【详解1】 =,而 ,故 原式=【详解2】 因为 ,所以 原式=【评注】 本题属常规题型.(2) 曲面与平面平行的切平面的方程是.【分析】 待求平面的法矢量为,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面切平面的法矢量与平行确定.【详解】 令 ,则, .设切点坐标为,则切平面的法矢量为 ,其与已知平面平行,因此有 ,可解得 ,相应地有 故所求的切平面方程为 ,即 .【评注】 本

2、题属基本题型.(3) 设,则= 1 .【分析】 将展开为余弦级数,其系数计算公式为.【详解】 根据余弦级数的定义,有 = = =1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算. (4)从的基到基的过渡矩阵为 .【分析】 n维向量空间中,从基到基的过渡矩阵P满足=P,因此过渡矩阵P为:P=.【详解】根据定义,从的基到基的过渡矩阵为P=. =【评注】 本题属基本题型.(5)设二维随机变量(X,Y)的概率密度为 则 .【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率,一般可转化为二重积分=进行计算.【详解】 由题设,有 = y 1

3、 D O 1 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式的公共部分D,再在其上积分即可. (6)已知一批零件的长度X (单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则的置信度为0.95的置信区间是 .(注:标准正态分布函数值【分析】 已知方差,对正态总体的数学期望进行估计,可根据,由确定临界值,进而确定相应的置信区间.【详解】 由题设,可见 于是查标准正态分布表知本题n=16, , 因此,根据 ,有,即 ,故的置信度为0.95的置信区间是 .【评注】 本题属基本题型.二、选择题(本题共6小题,每小题4分,满分2

4、4分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有 一个极小值点和两个极大值点. 两个极小值点和一个极大值点. 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点. C y O x 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极

5、小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导的图象,本题是其逆问题.(2)设均为非负数列,且,则必有(A) 对任意n成立. (B) 对任意n成立.(C) 极限不存在. (D) 极限不存在. D 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限是型未定式,可能存在也可能不存在,举反例说明即可;极限属型,必为无穷大量,即不存在.【详解】 用举反例法,取,则

6、可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. (3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则(A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点. (D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. A 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号. 【详解】 由知,分

7、子的极限必为零,从而有f(0,0)=0, 且 充分小时),于是可见当y=x且充分小时,;而当y= -x且充分小时,. 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想。(4)设向量组 = 1 * ROMAN I:可由向量组 = 2 * ROMAN II:线性表示,则 (A) 当时,向量组 = 2 * ROMAN II必线性相关. (B) 当时,向量组 = 2 * ROMAN II必线性相关. (C) 当时,向量组 = 1 * ROMA

8、N I必线性相关. (D) 当时,向量组 = 1 * ROMAN I必线性相关. D 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组 = 1 * ROMAN I:可由向量组 = 2 * ROMAN II:线性表示,则当时,向量组 = 1 * ROMAN I必线性相关. 或其逆否命题:若向量组 = 1 * ROMAN I:可由向量组 = 2 * ROMAN II:线性表示,且向量组 = 1 * ROMAN I线性无关,则必有. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如,则,但线性无关,排除(A);,则可由线性表示,但线性无关,排除(B)

9、;,可由线性表示,但线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题: = 1 * GB3 若Ax=0的解均是Bx=0的解,则秩(A)秩(B); = 2 * GB3 若秩(A)秩(B),则Ax=0的解均是Bx=0的解; = 3 * GB3 若Ax=0与Bx=0同解,则秩(A)=秩(B); = 4 * GB3 若秩(A)=秩(B), 则Ax=0与Bx=0同解.以上命题中正确的是(A) = 1 * G

10、B3 = 2 * GB3 . (B) = 1 * GB3 = 3 * GB3 .(C) = 2 * GB3 = 4 * GB3 . (D) = 3 * GB3 = 4 * GB3 . B 【分析】 本题也可找反例用排除法进行分析,但 = 1 * GB3 = 2 * GB3 两个命题的反例比较复杂一些,关键是抓住 = 3 * GB3 与 = 4 * GB3 ,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题 = 3 * GB3 成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如

11、,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题 = 4 * GB3 不成立,排除(D),故正确选项为(B).(6)设随机变量,则 (A) . (B) . (C) . (D) . C 【分析】 先由分布的定义知,其中,再将其代入,然后利用F分布的定义即可.【详解】 由题设知,其中,于是=,这里,根据F分布的定义知故应选(C).【评注】 本题综合考查了t分布、分布和F分布的概念,要求熟练掌握此三类常用统计量分布的定义.三 、(本题满分10分)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.求D的面积A;求D绕直线x=e旋转一周所得旋转体的体积V.【分

12、析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为,则曲线y=lnx在点处的切线方程是 由该切线过原点知 ,从而 所以该切线的方程为 平面图形D的面积 (2) 切线与x轴及直线x=e所围成的三角形绕直线x=e旋转所得的圆锥体积为 曲线y=lnx与x轴及直线x=e所围成的图形绕直线x=e旋转所得的旋转体体积为 ,因此所求旋转体的体积为 y 1 D O 1 e x【评注】 本题不是求绕坐标轴旋转的体积,因此不能直接套用现有公式. 也可考虑用微元法分析.四 、(本题满分12分)

13、将函数展开成x的幂级数,并求级数的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形。本题可先求导,再利用函数的幂级数展开即可,然后取x为某特殊值,得所求级数的和.【详解】 因为又f(0)=, 所以 =因为级数收敛,函数f(x)在处连续,所以 令,得 ,再由,得 五 、(本题满分10分)已知平面区域,L为D的正向边界. 试证:(1) ;(2) 【分析】 本题边界曲线为折线段,可将曲线积分直接化为定积分证明,或曲线为封闭正向曲线,自然可想到用格林公式;(2)的证明应注意用(1)的结果.【详解】 方法一:(1) 左边=

14、 =, 右边= =,所以 .(2) 由于,故由(1)得 方法二:(1) 根据格林公式,得,.因为D 具有轮换对称性,所以 =,故 . (2) 由(1)知 = = (利用轮换对称性) =【评注】 本题方法一与方法二中的定积分与二重积分是很难直接计算出来的,因此期望通过计算出结果去证明恒等式与不等式是困难的. 另外,一个题由两部分构成时,求证第二部分时应首先想到利用第一部分的结果,事实上,第一部分往往是起桥梁作用的.六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k0)

15、.汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0r0时,【分析】 (1) 先分别在球面坐标下计算分子的三重积分和在极坐标下计算分母的重积分,再根据导函数的符号确定单调性;(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.【详解】 (1) 因为 , ,所以在上,故F(t) 在内单调增加.(2) 因 ,要证明t0时,只需证明t0时,即 令 ,则 ,故g(t)在内单调增加.因为g(t)在t=0处连续,所以当t0时,有g(t)g(0).又g(0)=0, 故当t0时,g(t)0,因此,当t0时,【评注】

16、本题将定积分、二重积分和三重积分等多个知识点结合起来了,但难点是证明(2)中的不等式,事实上,这里也可用柯西积分不等式证明: ,在上式中取f(x)为,g(x)为即可. 九 、(本题满分10分)设矩阵,求B+2E的特征值与特征向量,其中为A的伴随矩阵,E为3阶单位矩阵.【分析】 可先求出,进而确定及B+2E,再按通常方法确定其特征值和特征向量;或先求出A的特征值与特征向量,再相应地确定A*的特征值与特征向量,最终根据B+2E与A*+2E相似求出其特征值与特征向量.【详解】 方法一:经计算可得 , , =.从而 ,故B+2E的特征值为当时,解,得线性无关的特征向量为 所以属于特征值的所有特征向量为

17、 ,其中是不全为零的任意常数.当时,解,得线性无关的特征向量为 ,所以属于特征值的所有特征向量为,其中为任意常数.方法二:设A的特征值为,对应特征向量为,即 . 由于,所以 又因 ,故有 于是有 , 因此,为B+2E的特征值,对应的特征向量为由于 ,故A的特征值为当时,对应的线性无关特征向量可取为, 当时,对应的一个特征向量为 由 ,得,.因此,B+2E的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为 ,其中是不全为零的任意常数;对应于特征值3的全部特征向量为 ,其中是不为零的任意常数.【评注】 设,若是A的特征值,对应特征向量为,则B与A有相同的特征值,但对应特征向量不同,B对应

18、特征值的特征向量为本题计算量大,但方法思路都是常规和熟悉的,主要是考查考生的计算能力。不过利用相似矩阵有相同的特征值以及A与A*的特征值之间的关系讨论,可适当降低计算量.十 、(本题满分8分)已知平面上三条不同直线的方程分别为 , , .试证这三条直线交于一点的充分必要条件为【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线交于一点,则线性方程组 (*)有唯一解,故系数矩阵与增广矩阵的秩均为2,于是由于 =,但根据题设 ,故 充分性:由,则从必要性的证明可知,故秩由于 =,故秩(A)=2. 于是, 秩(A)=秩

19、=2. 因此方程组(*)有唯一解,即三直线交于一点.方法二:必要性设三直线交于一点,则为Ax=0的非零解,其中 于是 . 而 =,但根据题设 ,故 充分性:考虑线性方程组 (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 (* *)因为 =-,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件

20、合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学期望;(2) 从乙箱中任取一件产品是次品的概率.【分析】 乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.【详解】 (1) X的可能取值为0,1,2,3,X的概率分布为 , k=0,1,2,3.即 X 0 1 2 3 P 因此 (2) 设A表示事件“从乙箱中任取一件产品是次品”,由于,构成完备事件组,因此根据全概率公式,有 = =【评注】本题对数学期

21、望的计算也可用分解法: 设 则的概率分布为 0 1 P 因为,所以 十二 、(本题满分8分)设总体X的概率密度为 其中是未知参数. 从总体X中抽取简单随机样本,记求总体X的分布函数F(x);求统计量的分布函数;如果用作为的估计量,讨论它是否具有无偏性.【分析】 求分布函数F(x)是基本题型;求统计量的分布函数,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验是否成立.【详解】 (1) (2) = = = =(3) 概率密度为 因为 =,所以作为的估计量不具有无偏性.【评注】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率

22、密度以及数学期望的计算等多个知识点. 将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.2003年考研数学(二)试题解析填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若时, 与是等价无穷小,则a= -4 .【分析】 根据等价无穷小量的定义,相当于已知,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当时,.于是,根据题设有 ,故a=-4.(2) 设函数y=f(x)由方程所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可

23、.【详解】 等式两边直接对x求导,得 ,将x=1,y=1代入上式,有 故过点(1,1)处的切线方程为 ,即 【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) 的麦克劳林公式中项的系数是 .【分析】 本题相当于先求y=f(x)在点x=0处的n阶导数值,则麦克劳林公式中项的系数是【详解】 因为 ,于是有 ,故麦克劳林公式中项的系数是【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为 ,则该曲线上相应于从0变到的一段弧与极轴所围成的图形的面积为 .【分析】 利用极坐标下的面积计算公式即可.【详解】 所求面积为 =.【评注】 本题考查极坐标下平

24、面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. (5) 设为3维列向量,是的转置. 若,则= 3 .【分析】 本题的关键是矩阵的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由=,知,于是【评注】 一般地,若n阶矩阵A的秩为1,则必有(6) 设三阶方阵A,B满足,其中E为三阶单位矩阵,若,则 .【分析】 先化简分解出矩阵B,再取行列式即可.【详解】 由知, ,即 ,易知矩阵A+E可逆,于是有 再两边取行列式,得 ,因为 , 所以 .【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题

25、一般都应先化简再计算. 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设均为非负数列,且,则必有(A) 对任意n成立. (B) 对任意n成立.(C) 极限不存在. (D) 极限不存在. D 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限是型未定式,可能存在也可能不存在,举反例说明即可;极限属型,必为无穷大量,即不存在.【详解】 用举反例法,取,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通

26、过排除法找到正确选项. (2)设, 则极限等于 (A) . (B) . (C) . (D) . B 【分析】 先用换元法计算积分,再求极限.【详解】 因为 = =,可见 =【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法. (3)已知是微分方程的解,则的表达式为 (A) (B) (C) (D) A 【分析】 将代入微分方程,再令的中间变量为u,求出的表达式,进而可计算出.【详解】将代入微分方程,得 ,即 .令 lnx=u,有 ,故 = 应选(A). 【评注】 本题巧妙地将微分方程的解与求函数关系结合起

27、来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有 一个极小值点和两个极大值点. 两个极小值点和一个极大值点. 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. C y O x 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极

28、大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导的图象,本题是其逆问题. (5)设, 则 (A) (B) (C) (D) B 【分析】 直接计算是困难的,可应用不等式tanxx, x0.【详解】 因为当 x0 时,有tanxx,于是 ,从而有 , ,可见有 且,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项. (6)

29、设向量组 = 1 * ROMAN I:可由向量组 = 2 * ROMAN II:线性表示,则 (A) 当时,向量组 = 2 * ROMAN II必线性相关. (B) 当时,向量组 = 2 * ROMAN II必线性相关. (C) 当时,向量组 = 1 * ROMAN I必线性相关. (D) 当时,向量组 = 1 * ROMAN I必线性相关. D 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组 = 1 * ROMAN I:可由向量组 = 2 * ROMAN II:线性表示,则当时,向量组 = 1 * ROMAN I必线性相关. 或其逆否命题:若向量组 = 1 * ROMAN

30、I:可由向量组 = 2 * ROMAN II:线性表示,且向量组 = 1 * ROMAN I线性无关,则必有. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如,则,但线性无关,排除(A);,则可由线性表示,但线性无关,排除(B);,可由线性表示,但线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。三 、(本题满分10分)设函数 问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连

31、续,要求既是左连续又是右连续,即 【详解】 = = =令,有 ,得或.当a=-1时,即f(x)在x=0处连续.当a=-2时,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分) 设函数y=y(x)由参数方程所确定,求【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t的取值.【详解】由,得 所以 = =当x=9时,由及t1得t=2, 故 五 、(本题满分9分) 计算不定积分 【分析】 被积函数含

32、有根号,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx,同样可考虑作变换:arctanx=t,即 x=tant.【详解】 设,则=又 = =,故 因此 = =【评注】本题也可用分布积分法: = = = =,移项整理得 =本题的关键是含有反三角函数,作代换或tant=x.六 、(本题满分12分) 设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件的解.【分析】 将转化为比较简单,=,关键是应注意:= =.然后再代入原方程化简即可.【详解】 (1) 由

33、反函数的求导公式知 ,于是有=.代入原微分方程得 ( * )(2) 方程( * )所对应的齐次方程的通解为 设方程( * )的特解为 ,代入方程( * ),求得,故,从而的通解是 由,得. 故所求初值问题的解为 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分) 讨论曲线与的交点个数.【分析】 问题等价于讨论方程有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x轴交点的个数).【详解】 设, y则有 4-k不难看出,x=1是的驻点. O 1 x当时,即单调减少;当x1时,即单调增加,故为函数的最小值.当k0时,无实根,即两条曲线无交点;当 k

34、=4,即4-k=0时,有唯一实根,即两条曲线只有一个交点;当 k4,即4-k0;在(a,b)内存在点,使 ;(3) 在(a,b) 内存在与(2)中相异的点,使 【分析】 (1) 由存在知,f(a)=0, 利用单调性即可证明f(x)0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为存在,故 又,于是f(x)在(a,b)内单调增加,故 (2) 设F(x)=, 则,故满足柯西中值定理的条件,于是在(a,b)内存在点,使 ,即 .(3) 因,在上应用拉格朗日中值定理,知在内存在一

35、点,使,从而由(2) 的结论得 ,即有 【评注】 证明(3),关键是用(2)的结论: ( 根据(2) 结论 ) ,可见对f(x)在区间上应用拉格朗日中值定理即可. 十 一、(本题满分10分)若矩阵相似于对角阵,试确定常数a的值;并求可逆矩阵P使 【分析】 已知A相似于对角矩阵,应先求出A的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P,则是常识问题.【详解】 矩阵A的特征多项式为 =,故A的特征值为由于A相似于对角矩阵,故对应应有两个线性无关的特征向量,即,于是有 由 ,知a=0.于是对应于的两个线性无关的特征向量可取为 , 当时, ,解

36、方程组得对应于的特征向量 令,则P可逆,并有十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 , , .试证这三条直线交于一点的充分必要条件为【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线交于一点,则线性方程组 (*)有唯一解,故系数矩阵与增广矩阵的秩均为2,于是由于 =,但根据题设 ,故 充分性:由,则从必要性的证明可知,故秩由于 =,故秩(A)=2. 于是, 秩(A)=秩=2. 因此方程组(*)有唯一解,即三直线交于一点.方法二:必要性设三直线交于一点,则为Ax=0的非零解,其中 于是 . 而

37、 =,但根据题设 ,故 充分性:考虑线性方程组 (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 (* *)因为 =-,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.2003年考研数学(三)试题解析填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设 其导函数在x=0处连续,则的取值范围是.【分析】 当0可直接按公式求导,当x=0时要求用定义求导.【详解】 当时,有 显

38、然当时,有,即其导函数在x=0处连续.(2)已知曲线与x轴相切,则可以通过a表示为 .【分析】 曲线在切点的斜率为0,即,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到与a的关系.【详解】 由题设,在切点处有 ,有 又在此点y坐标为0,于是有 ,故 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a0,而D表示全平面,则= .【分析】 本题积分区域为全平面,但只有当时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 = =【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的

39、公共部分上积分即可.(4)设n维向量;E为n阶单位矩阵,矩阵 , ,其中A的逆矩阵为B,则a= -1 .【分析】 这里为n阶矩阵,而为数,直接通过进行计算并注意利用乘法的结合律即可.【详解】 由题设,有 = = = =,于是有 ,即 ,解得 由于A0 ,故a=-1.(5)设随机变量X 和Y的相关系数为0.9, 若,则Y与Z的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可.【详解】 因为 = =E(XY) E(X)E(Y)=cov(X,Y),且于是有 cov(Y,Z)=【评注】 注意以下运算公式:,(6)设总体X服从参数为2的指数分布,为来自总体X的简单随机样本,则当时,依概率收敛于

40、 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值: 【详解】 这里满足大数定律的条件,且=,因此根据大数定律有 依概率收敛于二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. D 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义

41、进行讨论即可.【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0.于是有 存在,故x=0为可去间断点.【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在处连续,则. 本题事实上相当于考查此结论.(2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是 (A) 在处的导数等于零. (B)在处的导数大于零.(C) 在处的导数小于零. (D) 在处的导数不存在. A 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点取

42、得极小值,根据取极值的必要条件知,即在处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,在处的导数即;而在处的导数即【评注2】 本题也可用排除法分析,取,在(0,0)处可微且取得极小值,并且有,可排除(B),(C),(D), 故正确选项为(A).(3)设,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. B 【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】 若绝对收敛,即收敛,当然也有级数收敛,再根据,及收敛级数的运算性质知,与都收敛

43、,故应选(B).(4)设三阶矩阵,若A的伴随矩阵的秩为1,则必有(A) a=b或a+2b=0. (B) a=b或a+2b0.(C) ab且a+2b=0. (D) ab且a+2b0. C 【分析】 A的伴随矩阵的秩为1, 说明A的秩为2,由此可确定a,b应满足的条件.【详解】 根据A与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有 ,即有或a=b.但当a=b时,显然秩(A), 故必有 ab且a+2b=0. 应选(C).【评注】 n(n阶矩阵A与其伴随矩阵A*的秩之间有下列关系: (5)设均为n维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则

44、对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. B 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数,都有 ,则必线性无关,因为若线性相关,则存在一组不全为零的数,使得 ,矛盾. 可见(A)成立.(B): 若线性相关,则存在一组,而不是对任意一组不全为零的数,都有 (B)不成立.(C) 线性无关,则此向量组的秩为s;反过来,若向量组的秩为s,则线性无关,因此(C)成立.(D) 线性无关,则其任一部

45、分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数,使得成立,则线性相关. 其逆否命题为:若对于任意一组不全为零的数,都有,则线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:=掷第一次出现正面,=掷第二次出现正面,=正、反面各出现一次,=正面出现两次,则事件(A) 相互独立. (B) 相互独立. (C) 两两独立. (D) 两两独立. C 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再

46、检验是否相互独立.【详解】 因为,且 ,可见有,.故两两独立但不相互独立;不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立. 三 、(本题满分8分)设 试补充定义f(1)使得f(x)在上连续.【分析】 只需求出极限,然后定义f(1)为此极限值即可.【详解】 因为 = = = = =由于f(x)在上连续,因此定义 ,使f(x)在上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x,转化为求的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又

47、,求【分析】 本题是典型的复合函数求偏导问题:,直接利用复合函数求偏导公式即可,注意利用【详解】 ,故 ,所以 =【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分)计算二重积分 其中积分区域D=【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:,有 =令,则 .记 ,则 = = = =因此 , 【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数的和函数f(x)及其极值.【

48、分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】 上式两边从0到x积分,得 由f(0)=1, 得 令,求得唯一驻点x=0. 由于 ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数. 七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,且f(0)=0, 求F(x)所满足的一阶微分方程;求出F(x)的表达式.【分析】 F(x)所满足的微分

49、方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由 = = =(2-2F(x),可见F(x)所满足的一阶微分方程为(2) = =将F(0)=f(0)g(0)=0代入上式,得 C=-1.于是 【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在0,3上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使【分析】 根据罗尔

50、定理,只需再证明存在一点c,使得,然后在c,3上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在0,3上连续,所以f(x)在0,2上连续,且在0,2上必有最大值M和最小值m,于是 , , .故由介值定理知,至少存在一点,使 因为f(c)=1=f(3), 且f(x)在c,3上连续,在(c,3)内可导,所以由罗尔定理知,必存在,使【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形. 九、(本题满分13分)已知齐次线

51、性方程组 其中 试讨论和b满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式 =当时且时,秩(A)=n,方程组仅有零解.当b=0 时,原方程组的同解方程组为 由可知,不全为零. 不妨设,得原方程组的一个基础解系为,当时,有,原方程组的系数矩阵可化为 (将第1行的-1倍加到其余各行,

52、再从第2行到第n行同乘以倍) (将第n行倍到第2行的倍加到第1行,再将第1行移到最后一行) 由此得原方程组的同解方程组为 , .原方程组的一个基础解系为 【评注】 本题的难点在时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然为方程组的一个非零解,即可作为基础解系. 十、(本题满分13分)设二次型,中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值;利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A的主对角线上元素之和,特征值之积为A的行列式,由此可求出a,b 的值;进一步求出A的特征值和特征

53、向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f的矩阵为 设A的特征值为 由题设,有,解得 a=1,b= -2.(2) 由矩阵A的特征多项式 ,得A的特征值对于解齐次线性方程组,得其基础解系 ,对于,解齐次线性方程组,得基础解系 由于已是正交向量组,为了得到规范正交向量组,只需将单位化,由此得,令矩阵,则Q为正交矩阵. 在正交变换X=QY下,有,且二次型的标准形为 【评注】 本题求a,b,也可先计算特征多项式,再利用根与系数的关系确定:二次型f的矩阵A对应特征多项式为设A的特征值为,则由题设得,解得a=1,

54、b=2. 十一、(本题满分13分)设随机变量X的概率密度为 F(x)是X的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。注意应先确定Y=F(X)的值域范围,再对y分段讨论.【详解】 易见,当x8 时,F(x)=1.对于,有 设G(y)是随机变量Y=F(X)的分布函数. 显然,当时,G(y)=0;当时,G(y)=1. 对于,有 = =于是,Y=F(X)的分布函数为 【评注】 事实上,本题X为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布:当y0,而D表示全平面,则= .【分析】 本题积

55、分区域为全平面,但只有当时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 = =【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. (4)设A,B均为三阶矩阵,E是三阶单位矩阵. 已知AB=2A+B,B=,则= .【分析】 应先化简,从AB=2A+B中确定.【详解】 由AB=2A+B, 知 AB-B=2A-2E+2E,即有 , , ,可见 =.【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式A-E,写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵. (5)设n维向量;E为n阶单位矩阵,矩阵

56、 , ,其中A的逆矩阵为B,则a= -1 .【分析】 这里为n阶矩阵,而为数,直接通过进行计算并注意利用乘法的结合律即可.【详解】 由题设,有 = = = =,于是有 ,即 ,解得 由于A1,在内的驻点为 问a为何值时,t(a)最小?并求出最小值.【分析】 先由f(t)的导数为零确定驻点t(a),它是关于a的函数,再把此函数对a求导,然后令此导数为零,得到可能极值点,进一步判定此极值为最小值即可.【详解】 由,得唯一驻点 考察函数在a1时的最小值. 令 ,得唯一驻点 当时,;当时,因此为极小值,从而是最小值.【评注】 本题属基本题型,只是函数表达式由驻点给出,求极值与最值的要求均是最基本的.

57、七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点. 若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.【分析】 梯形OCMA的面积可直接用梯形面积公式计算得到,曲边三角形CBM的面积可用定积分计算,再由题设,可得一含有变限积分的等式,两边求导后可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】 根据题意,有 .两边关于x求导,得 当时,得 此为标准的一阶线性非齐次微分方程,其通解为 y A= M= O C B x=当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以 【评注】 本题一阶线性微分方程的求解比较简单,一般教材中都可找到标准的求解方法.八、(本题满分8分)设某商品从时刻0到时刻t的销售量为, 欲在T 时将数量为A的该商品销售完,试求t时的商品剩余量,并确定k的值;在时间段0,T上的平均剩余量.【分析】 在时刻t的剩余量y(t)可用总量A减去销量x(t)得到; 由于y(t)随时间连续变化,因此在时间段0,T 上的平均剩余量,即函数平均值可用积分表示.【详解】 (1) 在时刻t商品的剩余量为 =, 由=0,得 ,因此 (2) 依题意,在0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论