




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 TOC o 1-5 h z 1_引言1 HYPERLINK l bookmark12 o Current Document 2问题描述23 某于遗传算法TSP算法2基于遗传算法的TSP算法总体框架2算法的详细设计3解空间的表示方式3种群初始化4 HYPERLINK l bookmark23 o Current Document 适应度函教4 HYPERLINK l bookmark32 o Current Document 选择操作4 HYPERLINK l bookmark57 o Current Document 交叉操作 5 HYPERLINK l bookmark66 o Curre
2、nt Document 变异操作6 HYPERLINK l bookmark69 o Current Document 进化逆转操作63.3实验结果分析74基于模拟退火算法的TSP算法104.1、入算法的实现过程104.2算法流程图10 HYPERLINK l bookmark75 o Current Document 4.3模拟退火算法的实现过程10 HYPERLINK l bookmark83 o Current Document 4.4实验结果115对两种算法的评价145.1遗传算法优缺点14 HYPERLINK l bookmark108 o Current Document 5.2模
3、拟退火算法的优缺点15 HYPERLINK l bookmark118 o Current Document 6结语15参考文献17附录:19师学院本科生毕业论文论文题目:基于遗传算法与模拟退火算法的TSP算法求解10大城市最短旅途论文摘要:TSP问题为组合优化中的经典的NP完全问题.本论文以某旅行社为中 国十大旅游城市一威海制定最短旅途为例,分别利用基于遗传算法的TSP算法与基于模拟退火算法的TSP算法求解10大城市 旅游路线问题.本论文给出了遗传算法与模拟退火算法中各算子的 实现方法,并展示出求解系统的结构和求解系统基于MATLAB的实现 机制.利用MATLAB软件编程,运行出结果,并对基
4、于遗传算法的 TSP算法结果与基于模拟退火算法的TSP算法的结果进行比较,描述 其优缺点,并选择最为恰当的TSP算法,实现最短旅途的最优解.关键词:遗传算法;模拟退火算法;TSP;最短路径;Title: TSP Algorithm Based on Genetic Algorithm or Simulated Annealing Algorithm for Solving the Shortest Journey of 10 CitiesAbstract : TSP problem is a classic NP problem about combinatorial optimization
5、. This article takes a travel agency looking for the shortest trip of ten tourist cities in China Zhuhai, Xian, Hangzhou, Lhasa, Beijing, Lijiang, Kunming, Chengdu, Luoyang and Weihai for instance , and solves this problem by TSP algorithm based on genetic algorithm and simulated annealing algorithm
6、 . The article gives the implementations of every operator of genetic algorithm and simulated annealing algorithm and demonstrates the architecture and the implementation mechanism of the solving system based on MATLAB. I program and operate the results by MATLAB software , and compare the results b
7、ased on genetic algorithm and simulated annealing algorithm . And describe their advantages and disadvantages so that choose the most appropriate TSP algorithm to achieve the optimal solution for the shortest path.Keywords: genetic algorithm; simulated annealing algorithm ; TSP; the shortest pathTSP
8、问题为组合优化中的经典问题,已经证明为一 NP完全问题1,即其 最坏情况下的时间复杂性随着问题规模的扩大,按指数方式增长,到目前 为止不能找到一个多项式时间的有效算法.TSP问题可描述为:已知n个城市 相互之间的距离,某一旅行商从某个城市出发访问每个城市一次且仅一次, 最后回到出发城市,如何安排才使其所走路线最短.TSP问题不仅仅是一个简 单的组合优化问题,其他许多的NP完全问题可以归结为TSP问题,如邮路问 题、装配线上的螺帽问题和产品的生产安排问题等,使得TSP问题的有效求 解具有重要的意义.本文中的TSP算法主要采用遗传算法与模拟退火算法.遗传算法是一种进化算法,其基本原理是仿效生物界中
9、的“物竞天择, 适者生存”的演化法则.遗传算法把问题参数编码为染色体,再按照所选 择的适应度函数,利用迭代的方式进行选择、交叉、变异以及进化逆转等运 算对个体进行筛选和进化,使适应值大的个体被保留,适应值小的个体被淘 汰4,新的群体继承了上一代的信息,又优于上一代,这样反复循环,直至 满足条件,最后留下来的个体集中分布在最优解的周围,筛选出最优个体作 为问题的解.模拟退火算法的出发点是基于物理中固体物质的退火过程与一般的组合 优化问题之间的相似性5,该算法是一种优化算法,其物理退火过程由三部 分组成,分别为:加温过程、等温过程、冷却过程.其中,加温过程对应算 法设定初温,等温过程对应算法的Me
10、tropolis6抽样过程,冷却过程对应控 制参数的下降.这里能量的变化就是目标函数,要得到的最优解就是能量最 低态7 . Metropolis准则是SA算法收敛于全局最优解的关键所在, Metropolis准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷 阱.2问题描述本案例为某旅行社为中国十大旅游城市,分别为威海,根据全程路径最短为目的,制定最优的旅游顺序依次游玩这十个城市.这类问题就由TSP 算法来解决,寻找出一条最短遍历这10个城市的路径.利用google地图找到城 市坐标,下表为这十个城市的位置坐标如表2-1所示.表2-1 10个城市的位置坐标城市编号X坐标Y坐标城市编号X坐
11、标Y坐标122.31113.58626.86100.23234.37108.95724.89102.83330.29120.16830.59104.07429.6691.14934.65112.46539.95116.411037. 53122.133基于遗传算法TSP算法3.1基于遗传算法的TSP算法总体框架TSP问题的遗传算法包括编码设计、种群初始化、适应度函数选择、终止条 件设定、选择操作设定、交叉操作设定以及变异操作设定和进化逆转操作.为简 化TSP问题的求解,假设每个城市和其它任意一个城市之间都以欧氏距离8直接 相连.遗传算法TSP问题的流程图如图2-1所示.图2-1算法流程框架图3
12、.2算法的详细设计解空间的表示方式遗传算法对解空间的表示大多采用二进制编码形式,但是二进制编码方式不 适合TSP问题的解的表示,因为它要求特殊的修补算子9来修复变化算子所产生 的非法路径(即不可行路径).给出城市编号,用十进制数编码来表示解更合适, 例如:近邻表示、次序表示和路径表示等等.这里采用了最简单的路径表示法. 它是最自然、最接近人类思维的表示法.因此对十大旅游城市按照威海顺序依次编号为1,2, 3, 4,5, 6,7, 8, 9,10,例如,下面的路径(闭合 的): 512436798105 表示从城市5出发,经过1, 2, 4, 3, 6, 7, 9, 8, 10最后回到城市5的一
13、条 路径,可以自然地用一维数组来表示:(5, 1, 2, 4, 3, 6, 7, 9, 8, 10)10个旅游城市的TSP问题,如果将种群规模设为200,则解空间就用二维数组来 表示:Path20010.种群的规模选择应适当,盲目的增大种群规模不能使算法得到改进,反而大 大增加了计算的开销.10个城市TSP问题,可以选择小规模的种群(例如200), 种群初始化时,先产生1,2,,10的一条规则路径,然后在这条路径中随机 选两个数,将它们交换位置,这样做若干次(本文采用200次),保证这条路径 变成了一条随机的路径.以这条随机路径为基础,对一些随机的位,做两两交换, 这样产生了一个个体;同样地产
14、生种群里其它的个体.适应度函数适应度表明个体或解的优劣性10,不同的问题,适应度函数的定义方式也不同,本文设kk2|Ik I Ik为一个采用整数编码的染色体,D不同,本文设kk2|610k.k.i城市化城市化的欧氏距离, j则该个体的适应度为11:(1)fitness =(1)羿 Dkk + i /n 1i=1即适应度函数为恰好走遍10个城市,在回到出发城市的总距离的倒数.优化的目 标就是选择适应度函数值尽可能大的染色体,适应度函数值越大的染色体越优 质,反之越劣质.求得种群中所有个体的适应值后,将适应值最大的个体保存起 来,到演化完毕时,这个个体就是最后要求的最优解.选择操作选择操作的目的是
15、为了从当前群体中以一定的概率选择优良个体到新群体 中,将选择算子作用于群体,从而使优化的个体有机会直接遗传到下一代或通过 配对交叉产生新的个体再遗传到下一代;个体被选中的概率与适应度值有关,适 应度值越大,被选中的概率也就越大12,而适应度值越大的染色体越优质.本案 例选择轮盘赌法,即基于适应度比例的选择策略,个体i被选中的概率为:(2)p =(2)艺FjJ=1其中,F为个体,的适应度值;N为种群个体数目.交叉操作交叉操作是遗传算法中最主要的遗传操作,通过交叉操作可以得到新一代个体,新个体结合了其父辈个体的特性,交叉体现了信息交换的思想.利用不同映射杂交,确定交叉操作的父代,将父代样本两两分组
16、,每组重复以下过程:(1)产生两个1,10区间的随机整数(1)产生两个1,10区间的随机整数r1和r2,确定两个位置,对两个位置的中间数据进行交叉,10交叉为:10(2)交叉后,1010的中间数据进行交叉,10交叉为:10(2)交叉后,1010对同一个个体中有重复的城市编号,不重复的数字保留,有冲突的数字(带*的位置)采用部分映射的方法消除冲突,即利用中间段的对应关突的数字(带*的位置)采用部分映射的方法消除冲突,即利用中间段的对应关系进行映射.结果为:6 7 1010 5交叉是希望不同的个体在产生下一代时,能够结合各自的优势基因,产生更 好质量的下一代.变异操作变异可以看作是外界对种群的影响
17、.变异是为了引入新的因素,希望个体在 外界的作用下,能够实现自我优化,生好的基因.将变异算子作用于群体.即是对 群体中的个体串的某些基因位置上的基因值作变动.变异算子采用了简单的倒序 变换,以10城市为例,随机的产生两个小于10的整数,对某个个体进行分割, 假设,二4,匕=7,将分割段倒序并放回原来的位置即可,如下数组所示:512 | 4 | 36 |7 | 9810得到的新解为:512 | 7 36 4 9810由于这种变异算子仍能保持个体中的路径片段,即倒序前后这个切割段的路 径是一样的,只是两端点与整个路径的连接颠倒了,这使得变异不是漫无边际, 而是有所取舍的.这种简单反序可以保证后代仍
18、然是一条合法途径.进化逆转操作为了改善遗传算法的局部搜索能力,在选择、交叉、变异之后引进连续多次 的进化逆转操作,这里的“进化”是指逆转算子的单方向性13,即只有经逆转 后,适应度值有所提高的才接受下来,否则逆转无效.产生两个1,10区间的随机整数r1和2,确定两个位置,将其对换位置例如,二4,r=75 1 24 3 6 7 9 8 10进化逆转后为:5 1 27 3 6 4 9 8 10对每个个体进行交叉变异,然后代入适应度函数进行评估,X选择出适应值 大的个体进行下一代交叉和变异以及进化逆转操作循环操作:判断是否满足设定 的最大遗传代数MAXGEN14,不满足则跳入适应度值计算;否则结束遗
19、传操作.1-10的十个数字按顺序为威海的编号.利用各城市坐标构成的10 2的矩阵及初始化随机值和DrawPath函数画出闭合路径图,为优化前的随机 路线轨迹图,如图3-1所示:图3-1随机路线轨迹图图中三角标注的数字6代表起点,依次按照箭头方向遍历,最终再次回到起 点6.初始种群中的一个随机值:637851249106总距离:165.2494对照1-10数字编号所代表的的城市,随机路线为:一一一一一一一一威海一.优化后的最优路线图如图3-2所示:图3-2最优路线图最优解:467131059284总距离:77.1532即最优路线如下所示:一一一一一威海一一一一一此遗传算法在解决TSP问题过程中的
20、优化迭代过程如下图3-3所示:图3-3优化过程其中横坐标表示迭代次数,纵坐标为优化过程中路线长度.由该优化过程图 可知,优化前后路径长度有了很大的改进,20代以后路径长度基本上已经保持 不变了,可以认为是最优解了.总距离由原来的165.2494变为77.1532,降低为 原来的46.69%,表明利用遗传算法解决TSP问题可以起到较好的作用.4基于模拟退火算法的TSP算法4.1 SA算法的实现过程4.2算法流程图4.3模拟退火算法的实现过程控制参数的设置需要设置的主要控制参数有降温速率q、取初始温度九足够大,令T二个 任取初始解S,确定每个t时的迭代次数,即Metropolis链长L,如图表4-
21、1 所示.表4-1参数设定降温速率q初始温度T0结束温度Tend链长L0.910000.001500初始解对于10个城市的TSP问题,得到的解为1n 一个排序,其中每个数字为对 应城市的编号,10个城市的TSP问题1,2,3, 4,5,6,7,8,9,10,则|1|2|3|4|5|6|7|8|9|10就为一个合法解,采用随机排列的方法产生一个初始解 S1.解变换生成新解通过对当前解S1进行变换,产生新路径的数组即新解,这里采用的变换是产 生随机数的方法来产生将要交换的两个城市,用二邻域变换法15产生新的路径, 即新的可行解S2.例如n=10时,产生两个1,10围的随机整数二和Y2确定两个 位置
22、,将其对换位置,如r =4,七二7512 | 43679810得到的新解为:512 73649810Metropolis 准则若路径长度函数为f (S),则当前解的路径为f (S1),新解的路径为f (S2),(3)路径差为 df - f (S ) - f (S ) 16,则 Metropolis 准则为17:(3)P exp( - T)若df rand 18,也接受S作为新的当前解,S = S ;否则保留当前解S .2121降温利用降温速率q进行降温,即T=qT,则T小于结束温度,则停止迭代输出 当前解S1为最优解,结束程序,否则按衰减函数衰减T后逐渐降低控制温度,重 复Metropolis
23、过程,继续迭代,直至满足结束准则,求出最优解.4.4实验结果利用各城市坐标构成的10 2的矩阵及初始化随机值和DrawPath函数分别 画出优化前的随机路径轨迹图与优化后的最优闭合路径图,以及优化过程图.并 利用计时器记录了运行结果所花费的时间.为优化前的随机路线轨迹图,如图4-2所示.File Edit View n&ert Tools Desktop Window Helpk 冬公鸳口ns io图4-2随机路线轨迹图初始种群中的一个随机值:817436102958总距离:149.0742优化后的最优路线轨迹图如图4-3所示.图4-3最优路线轨迹图最优解:928467131059总距离:77
24、.1532即最优路线如下所示:一一一一一一一威海一一本次运行的时间如下所示:Elapsed time is 12.232553 seconds.优化过程如图4-4所示:图4-4优化过程由图4-4可以看出,优化前后的路径长度得到很大的改进,由优化前的 149.0742变为77.1532,变为原来的51.75%,50代以后路径长度基本上已经保 持不变了,可以认为是最优解了.5对两种算法的评价5.1遗传算法优缺点遗传算法优点:对可行解表示的广泛性;群体搜索特性;不需要辅助信息;在启发式随机搜索特性;遗传算法在搜索过程中不容易陷入局部最优,即使在所定义的适应度函数是不连续的,非规则的或有噪音的情况下,
25、也能以很大的概率找到全局最优解;遗传算法具有固有的并行性和并行计算能力;遗传算法具有可扩展性,易于同别的技术混合.遗传算法缺点:编码不规则或编码存在表示的不规则性;单一的遗传算法编码不能全面的将优化问题的约束表示出来;遗传算法通常的效率比比其他传统的优化方法低;遗传算法容易出现过早收敛;遗传算法对算法的精度,可信度,计算复杂性等方面,还没有有效的定量 分析方法.5.2模拟退火算法的优缺点模拟退火法优点:它能够处理具有任意程度的非线性、不连续性、随机性的目标函数;目标函数可以具有任意的边界条件和约束;比其他线性优化方法,SA的编程工作量小,且易于实现;统计上可以保证找到全局最优解.模拟退火算法缺
26、点:找到最优解需要耗费非常多的时间;相对于其他一些技术对某一个具体问题的求解需要更困难的参数调整;使用不当致使降温过快,导致模拟退火变为了模拟淬火(SQ),而SQ是无 法从统计学上保证找到最优解的.6结语遗传算法利用自然界的“物竞天择、适者生存”的演化法则,把问题参数编 码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染 色体的信息,最终生成符合优化目标的染色体.实践证明,遗传算法在搜索优秀 解的过程中模拟生物遗传,实现优中选优的过程,在解空间中快速收敛到优秀解. 遗传算法对于解决TSP问题等组合优化问题具有较好的寻优性能.模拟退火算法 是利用自适应启发式概率性搜索的算法,
27、可以用以求解不同的非线性问题,对不 可微甚至不连续的函数优化,能以较大的概率求得全局最优解,并且能处理不同 类型的优化设计变量(离散的,连续的,混合型的),不需要任何的辅助信息, 对目标函数和约束函数没有任何要求.利用Metropolis算法适当地控制温度的 下降过程,在优化问题中具有很强的竞争力,但是其优化过程效率略低于遗传算 法.因此,解空间较小的情况下,遗传算法与模拟退火算法均可采用,但是解空 间较大时,考虑结果运行时间,应采用遗传算法.参考文献毕晓君.信息智能处理技术M.:电子工业.2010.储理才.基于MATLAB的遗传算法程序设计及TSP问题求解J.集美大学学报:2001, 6 (
28、01): 14-19代桂平,王勇,侯亚荣.基于遗传算法的TSP问题求解算法及其系统J.微计算机信息,2010(04): 15-16,19Negnevistsky,M.顾力栩,晋惠译.人工智能智能系统指南M.:机械工业.2010.任春玉.基于混合遗传算法的TSP问题优化研究J.商业大学学报.2007.Michalewicz Z. Genetic Algorithms +Data Structure=Evolution Programs. Springer-Verlag, Berlin. 2011易敬,王平,哲.基于遗传算法的TSP问题研究J.信息技术,2006, 30(7): 110-112.邓
29、辉文.离散数学M.:清华大学.2006.雁兵,付显.基于遗传算法的TSP问题求解与仿真J.电光与控制.2007.春霞,王蕊.基于遗传算法求解TSP问题的算法设计汀.工学院学报.2007.阿奇.MATLAB实用教程M.:电子工业.2004.飞,白艳萍.用遗传算法求解旅行商问题J.中北大学学报.2007.翟梅梅.基于交叉算子改进的遗传算法求解TSP问题J.师学院学 报.2009.Merz P.A comparison of recombination operators forthe traveling salesman problemA.Proceedings of the Genetic an
30、d Evolutionary Conference.2007周涛.基于改进遗传算法的TSP问题研究J.微电子学与计算机,2006, 23(10): 104-107.Jung S, Moon B R. Toward Minimal Restriction of Genetic Encoding and Crossovers for the Two-Dimensional Euclidean TSP J.IEEE Transactions on Evolutionary Computation, 2011, 6 ( 12) :557565Tsai Cheng-Fa , Tsai Chun-Wei
31、, Yang Tzer . A Modified Mul tiple-Searching Method to Genetic Algorithms for Solving Travel ing Salesman ProblemJ.IEEE Transactions on Systems , Man and Cybernetics , 2011 , 3 (10) :612Write A H. Genetic Algorithms for Real Parameter Optimization. FoundationofGeneticAlgorithms.Sanmateo, GA.2010:205
32、-218附录:遗传算法的TSP方法代码:1种群初始化函数InitPop的代码:%初始化种群%输入:% NIND :种群大小% N:个体染色体长度(这里为城市的个数)%输出:%初始种群function Chrom=InitPop(NIND,N)Chrom=zeros(NIND,N);% 用于存储种群for i=1:NINDChrom(i,:)=randperm(N);%随机生成初始种群 end2种群个体的适应度函数Fitness的代码:%适配值函数%输入:%个体的长度(TSP的距离)%输出:%个体的适应度值function FitnV=Fitness(len) FitnV=1./len;3选择操
33、作函数的Select的代码:%选择操作%输入%Chrom 种群%FitnV适应度值%GGAP :代沟%输出%SelCh被选择的个体function SelCh=Select(Chrom,FitnV,GGAP)NIND=size(Chrom,1);NSel=max(floor(NIND*GGAP+.5),2);ChrIx=Sus(FitnV,NSel);SelCh=Chrom(ChrIx,:);其中,函数Sus的代码为:%输入:%FitnV 个体的适应度值%Nsel 被选择个体的数目%输出:%NewChrIx被选择个体的索引号function NewChrIx = Sus(FitnV,Nsel)
34、Nind,ans = size(FitnV);cumfit = cumsum(FitnV);trials = cumfit(Nind) / Nsel * (rand + (0:NselT);Mf = cumfit(:, ones(1, Nsel);Mt = trials(:, ones(1, Nind);NewChrIx, ans = find(Mt Mf & zeros(1, Nsel); Mf(1:NindT, :) =rand %交叉概率 PcSelCh(i,:),SelCh(i+1,:)=intercross(SelCh(i,:),SelCh(i+1,:);endend%输入:%a和b
35、为两个待交叉的个体%输出:%a和b为交叉后得到的两个个体其中intercross函数代码:function a,b=intercross(a,b)L=length(a);r1=randsrc(1,1,1:L);r2=randsrc(1,1,1:L);if r1=r2a0=a;b0=b; s=min(r1,r2);e=max(r1,r2);for i=s:ea1=a;b1=b;a(i)=b0(i);b(i)=a0(i);x=find(a=a(i);y=find(b=b(i);i1=x(x=i);i2=y(y=i);if isempty(i1)a(i1)=a1(i);endif isempty(i
36、2)b(i2)=b1(i);endendend5变异操作函数Mutate的代码:%变异操作%输入:%SelCh被选择的个体%Pm 变异概率%输出:% SelCh变异后的个体function SelCh=Mutate(SelCh,Pm)NSel,L=size(SelCh);for i=1:NSelif Pm=randR=randperm(L);SelCh(i,R(1:2)=SelCh(i,R(2:-1:1); endend6进化逆转操作函数Reverse代码:%进化逆转函数%输入%SelCh被选择的个体%D 个城市的距离矩阵%输出%SelCh 进化逆转后的个体function SelCh=Rev
37、erse(SelCh,D)row,col=size(SelCh);ObjV=PathLength(D,SelCh); %计算路径长度 SelCh1=SelCh; for i=1:rowr1=randsrc(1,1,1:col);r2=randsrc(1,1,1:col);mininverse=min(r1 r2);maxinverse=max(r1 r2);SelCh1(i,mininverse:maxinverse)=SelCh1(i,maxinverse:T:mininverse); end ObjV1=PathLength(D,SelCh1); %计算路径长度 index=ObjV1Ob
38、jV;SelCh(index,:)=SelCh1(index,:);7画出所给路线的轨迹图函数DrawPath的代码:%画路径函数%输入% Chrom 待画路径% X 各城市坐标位置function DrawPath(Chrom,X)R=Chrom(1,:) Chrom(1,1); % 个随机解(个体) figure; hold onplot(X(:,1),X(:,2),o,color,0.5,0.5,0.5)plot(X(Chrom(1,1),1),X(Chrom(1,1),2),rv,MarkerSize,20)for i=1:size(X,1)text(X(i,1)+0.05,X(i,2
39、)+0.05,num2str(i),color,1,0,0);endA=X(R,:);row=size(A,1);for i=2:rowarrowx,arrowy = dsxy2figxy(gca,A(iT:i,1),A(iT:i,2);% 坐标转换annotation(textarrow,arrowx,arrowy,HeadWidth,8,color,0,0,1); end hold offxlabel(横坐标)ylabel(纵坐标)title(轨迹图)box on8遗传算法的主函数代码:%遗传算法求解TSP问题(为选择操作从新设计后程序)%输入:%D距离矩阵%NIND为种群个数%NIND%
40、X参数是中国10个城市的坐标(初始给定)%MAXGEN为停止代数,遗传到第MAXGEN代时程序停止,MAXGEN的具体取值视问题的规模和耗费 的时间而定%m为适值淘汰加速指数,最好取为1,2,3,4,不宜太大%Pc交叉概率%Pm变异概率%输出:%R为最短路径%Rlength为路径长度clear clcclose allX=22.31 113.5834.37 108.9530.29 120.1629.66 91.14%生成距离矩阵%城市个数%生成距离矩阵%城市个数%种群大小%最大遗传代数%交叉概率%变异概率%代沟 TOC o 1-5 h z %遗传参数 %种群大小%最大遗传代数%交叉概率%变异概
41、率%代沟MAXGEN=200;1Pc=0.9;1Pm=0.05;GGAP=0.9;1%初始化种群 Chrom=InitPop(NIND,N); %画出随机解的路径图 DrawPath(Chrom(1,:),X) title pause(0.0001) %输出随机解的路径和总距离 disp(初始种群中的一个随机值:) OutputPath(Chrom(1,:); Rlength=PathLength(D,Chrom(1,:); disp(总距离:,num2str(Rlength); disp()%优化 gen=0;figure;hold on;box onxlim(0,MAXGEN)title(
42、优化过程)xlabel(代数)ylabel(最优值)ObjV=PathLength(D,Chrom); %计算路径长度 preObjV=min(ObjV);while gen,num2str(R(i);enddisp(p)计算个体路线长度函数PathLength代码:%计算各个体的路径长度%输入:% D 两两城市之间的距离% Chrom个体的轨迹function len=PathLength(D,Chrom)row,col=size(D);NIND=size(Chrom,1);len=zeros(NIND,1);for i=1:NINDp=Chrom(i,:) Chrom(i,1);i1=p(
43、1:end-1);i2=p(2:end);len(i,1)=sum(D(i1T)*col+i2);end重插入子代得到新种群的函数Reins代码:%重插入子代的新种群%输入:%Chrom 父代的种群%SelCh 子代种群%ObjV 父代适应度%输出% Chrom组合父代与子代后得到的新种群 function Chrom=Reins(Chrom,SelCh,ObjV) NIND=size(Chrom,1);NSel=size(SelCh,1);TobjV,index=sort(ObjV);Chrom=Chrom(index(1:NIND-NSel),:);SelCh;模拟退火算法的TSP方法代码
44、:生成新解:function S2=NewAnswer(S1)%输入% S1:当前解%输出% S2:新解N=length(S1);S2=S1;a=round(rand(1,2)*(NT)+1);W=S2(a(1);S2(a(1)=S2(a(2);S2(a(2)=W;Metropolis准则函数function S,R=Metropolis(S1,S2,D,T)%输入% S1:当前解% S2:新解% D:距离矩阵(两两城市的之间的距离)% T:当前温度%输出% S:下一个当前解% R:下一个当前解的路线距离%R1=PathLength(D,S1); %计算路线长度N=length(S1);%得到
45、城市的个数R2=PathLength(D,S2); %计算路线长度dC=R2-R1;%计算能力之差if dC=rand%以 exp(-dC/T )概率接受新路线S=S2;R=R2;else%不接受新路线S=S1;R=R1;Endfunction varargout = dsxy2figxy(varargin)if length(varargin1) = 1 & ishandle(varargin1) .& strcmp(get(varargin1,type),axes)hAx = varargin1;varargin = varargin(2:end);elsehAx = gca;end;if length(varargin) = 1pos = varargin1;elsex,y = deal(varargin:);endaxun = get(hAx,Units);set(hAx,Units,normalized);axpos = get(hAx,Position);axlim = axis(hAx);axwidth = diff(axlim(1:2);axheight = diff(axlim(3:4);if exist(x,var)varargout1 = (x - axlim(1) *
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 16 《大家排好队》(教学设计)2024-2025学年统编版(2024)小学道德与法治一年级上册
- 云南科技信息职业学院《文学作品与影视改编》2023-2024学年第二学期期末试卷
- 临沂职业学院《交通大数据分析与处理》2023-2024学年第二学期期末试卷
- 河南2025年河南省委党校省直分校招聘博士研究生2人笔试历年参考题库附带答案详解
- 辽宁装备制造职业技术学院《水质监测与实验》2023-2024学年第二学期期末试卷
- 洛阳师范学院《运动技能学习与控制》2023-2024学年第二学期期末试卷
- 2025年度文化活动场地租赁合同规范文本
- 监理机构职责
- 小数的意义二(教学设计)-2023-2024学年四年级下册数学北师大版
- 2025年度文化产业反担保保证合同及文化产业发展规划
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 2024-2025学年广东省部分学校高一(上)第一次联合考试物理试卷(含答案)
- 《黄色新闻的泛滥》课件
- 2024年山东省公务员考试《行测》真题及答案解析
- 化工原理Ⅱ学习通超星期末考试答案章节答案2024年
- 2024-2025学年初中体育与健康九年级全一册人教版(2024)教学设计合集
- 环保产业政策及市场发展趋势分析研究
- 2024年河南省高考对口升学语文英语试题
- 学习白求恩精神,做一个高尚的人一个纯洁的人
- 《中医药学概论》期末考试复习题库(含答案)
- 2024年秋季新外研版三年级上册英语课件 Unit 1 第1课时(Get ready)
评论
0/150
提交评论