应用时间序列实验报告_第1页
应用时间序列实验报告_第2页
应用时间序列实验报告_第3页
应用时间序列实验报告_第4页
应用时间序列实验报告_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-. z.工程学院课程设计时间序列分析课程设计学生*:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年 6 月 2 日考核工程考核容得分平时考核20分出勤情况、实训态度、效率;知识掌握情况、根本操作技能、知识应用能力、获取知识能力实验一20分完成此实验并获得实验结果实验二20分完成此实验并获得实验结果实验三20分完成此实验并获得实验结果文档资料20分表达能力、文档写作能力和文档的规性总评成绩指导教师评语:目录 TOC o 1-2 h z u HYPERLINK l _Toc4842552421. 实验一澳大利亚常住人口变动分析 PAGEREF _Toc484255242

2、 h 3HYPERLINK l _Toc4842552431.1 实验目的 PAGEREF _Toc484255243 h 3HYPERLINK l _Toc4842552441.2 实验原理 PAGEREF _Toc484255244 h 3HYPERLINK l _Toc4842552451.3 实验容 PAGEREF _Toc484255245 h 3HYPERLINK l _Toc4842552461.4 实验过程 PAGEREF _Toc484255246 h 3HYPERLINK l _Toc4842552472. 实验二我国铁路货运量分析 PAGEREF _Toc48425524

3、7 h 3HYPERLINK l _Toc4842552482.1 实验目的 PAGEREF _Toc484255248 h 3HYPERLINK l _Toc4842552492.2 实验原理 PAGEREF _Toc484255249 h 3HYPERLINK l _Toc4842552502.3 实验容 PAGEREF _Toc484255250 h 3HYPERLINK l _Toc4842552512.4实验过程 PAGEREF _Toc484255251 h 3HYPERLINK l _Toc4842552523. 实验三美国月度事故死亡数据分析 PAGEREF _Toc48425

4、5252 h 3HYPERLINK l _Toc4842552533.1 实验目的 PAGEREF _Toc484255253 h 3HYPERLINK l _Toc4842552543.2 实验原理 PAGEREF _Toc484255254 h 3HYPERLINK l _Toc4842552553.3 实验容 PAGEREF _Toc484255255 h 3HYPERLINK l _Toc4842552563.4 实验过程 PAGEREF _Toc484255256 h 3HYPERLINK l _Toc484255257课程设计体会 PAGEREF _Toc484255257 h 3

5、-. z.实验一澳大利亚常住人口变动分析1971年9月1993年6月澳大利亚常住人口变动单位:千人情况如表1-1所示行数据。表1-163.267.955.849.550.255.449.945.348.161.755.253.149.559.930.630.433.842.135.828.432.944.145.536.639.549.848.82937.334.247.637.339.247.643.94951.260.86748.965.465.467.662.555.149.657.347.345.544.54847.949.148.859.451.651.460.960.956.858

6、.662.16460.364.67179.459.983.475.480.255.958.565.269.559.121.562.5170-47.462.26033.135.343.442.758.434.41判断该序列的平稳性与纯随机性。2选择适当模型拟合该序列的开展。3绘制该序列拟合及未来5年预测序列图。1.1 实验目的掌握用SAS软件对数据进展相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列开展。1.2 实验原理1平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。2模型识别先对模型进展定阶,选出相对

7、最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进展显著性诊断。3模型预测模型拟合好之后,利用该模型对序列进展短期预测。1.3 实验容1判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的围有界。如果序列的时序图显示该序列有明显的趋势性或周期性,则它通常不是平稳序列。对自相关图进展检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。而单位根检验我们用到的是DF检验。以1阶自回归序列为例:该序列的特征方程为:特征根为:当特征根在单位圆时:该序列

8、平稳。当特征根在单位圆上或单位圆外时:该序列非平稳。对于纯随机性检验,既白噪声检验,可以用SAS系统中的IDENTIFY语句来输出白噪声检验的结果。2选择适当模型拟合该序列的开展先对模型进展定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进展显著性诊断。ARIMA过程的第一步是要IDENTIFY命令对该序列的平稳性和纯随机性进展识别,并对平稳非白噪序列估计拟合模型的阶数。使用命令如下:proc print data=e*ample3_20;IDENTIFY VAR =people nlag=8 minic p= (0:5) q =(0:5);ru

9、n;3绘制该序列拟合及未来5年预测序列图模型拟合好之后,利用该模型对序列进展短期预测。预测命令如下:forecast lead=5 id=time out=results;run;其中,lead指定预期数;id指定时间变量标识;out指定预测后期的结果存入*个数据集。利用存储在临时数据集RESULTS里的数据,我们可以绘制拟合预测图,相关命令如下:proc gplot data=results;plot people*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=red i=none v=star;symbol2

10、c=black i=join v=none;symbol3 c=green i=join v=none l=32;run;1.4 实验过程按照实验的过程运行程序,对程序结果的分析如下:1判断该序列的平稳性与纯随机性图1-1 1971年9月-1993年6月澳大利亚季度常住人口变动序列时序图时序图显示澳大利亚季度常住人口围绕在52千人附近随机波动,没有明显趋势或周期,根本可视为平稳模式。图1-2序列自相关图自相关图显示该序列的自相关系数一直都比拟小,始终控制在2倍的标准差围以,故认为该序列是平稳序列。图1-3 序列的单位根检验结果根据第五列、第六列输出的结果我们可以判断,当显著性水平取0.05时,

11、序列非平稳,但当消除线性趋势之后序列平稳。图1-4 白噪声检验输出结果可以看到延迟6阶、12阶的检验P值均小于0.05,故拒绝原假设,认为该序列为非白噪声序列非纯随机序列。2选择适当模型拟合该序列的开展图1-5 IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对于最小的是ARMA1,3模型。图1-6 ESTIMATE命令输出的未知参数结果图1-7 ESTIMATE命令输出的拟合统计量结果图1-8 ESTIMATE命令输出的系数矩阵图1-9 ESTIMATE命令输出的残差自相关检验结果从输出结果可以看出由于延迟各

12、阶的LB统计量的P值均显著大于,所以该拟合模型显著成立。图1-10 ESTIMATE命令输出的拟合模型形式该输出形式等价于:或记为:3绘制该序列拟合及未来5年预测序列图图1-11 FORECAST命令输出的5年预测结果拟合效果图如图1-11:图1-12 拟合效果图实验二我国铁路货运量分析我国19492008年每年铁路货运量单位:万吨数据如表2-1所示。表2-1年货运量年货运量年货运量19495589196953120198915148919509983197068132199015068119511108319717647119911528931952132171972808731992157

13、627195316131197383111199316279419541928819747877219941632161955193761975889551995165982195624605197684066199617102419572742119779530919971721491958381091978110119199816430919595441019791118931999167554196067219198011127920001785811961449881981107673200119318919623526119821134952002204956196336418198

14、311878420032242481964417861984124074200424901719654910019851307092005269296196654951198613563520062882241967430891987140653200731423719684209519881449482008330354请选择适当的模型拟合该序列,并预测20092013年我国铁路货运量。2.1 实验目的掌握用SAS软件对数据进展相关性分析,掌握对非平稳时间序列的随机分析,选择适宜模型,拟合序列开展。2.2 实验原理ARIMA模型的预测和ARMA模型的预测方法非常类似。模型的一般表示方法为:同

15、时可以简记为:式中,为零均值白噪声序列。我们可以从上式看出,ARIMA模型的实质就是差分与ARMA模型的组合,这说明任何非平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进展ARMA模型拟合。1对差分平稳后的序列可以使用ARIMA模型进展拟合,ARIMA建模操作流程如图2-1所示。平稳性检验白噪声检验分析完毕通过差分运算拟合ARMA模型未通过平稳不平稳获得观察值序列图2-1 建模流程2.3 实验容由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在ARMA过程中。先利用时序图分析模型是否平稳,可以运用实验一的程序来实现。再对该序列进展1阶差分运

16、算,同时考虑差分后序列的平稳性,添加如下命令:difhuoyunliang=dif(huoyunliang);命令difhuoyunliang=dif(huoyunliang);是指令系统对变量进展的1阶差分后的序列值赋值给变量difhuoyunliang,其中dif()是差分函数。利用差分函数得出平稳模型。再对模型进展定阶和进展预测。模型定阶:identify var=difhuoyunliang(1) nlag=8 minic p=(0:5) q=(0:5);模型预测:forecast lead=5 id=time;2.4 实验过程1判断序列的平稳性图2-2 我国19492008年每年铁路

17、货运量时序图通过分析可知,该时序图有明显的上升趋势,所以为非平稳序列。在此,对该序列进展1阶差分运算。图2-3 1阶差分后序列时序图图2-4 1阶差分后序列自相关图通过分析可知,时序图显示差分后序列没有明显的非平稳特征;自相关图显示序列有很很强的短期相关性,所以可认为1阶差分后序列平稳。对平稳的1阶查分序列进展白噪声检验,检验结果如图图2-5 1阶差分后序列白噪声检验默认显著性水平为0.05的条件下,由于延迟6阶、12阶的P值为0.0012和0.0098,小于0.05,所以该差分后序列不能视为白噪声序列,即差分后的序列还蕴含着不容无视的相关信息可供提取。2对平稳非白噪声查分序列进展拟合图2-6

18、 IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有模型中,BIC信息量相对于最小的是模型。考虑到前面已经进展的1阶差分运算,实际上是用模型拟合原序列。图2-7 ESTIMATE命令输出的未知参数结果图2-8 ESTIMATE命令输出的拟合统计结果图2-8 ESTIMATE命令输出的残差自相关检验结果显然,拟合检验统计量的P值均显著大于显著性水平,所以可以认为改残差序列即为白噪声序列,显著性检验显示两参数均显著,这说明模型对该序列建模成功。图2-10 ESTIMATE命令输出的拟合模型形式输出结果显示,序列的拟合模型为 ,模型口径为:等价记为:利用拟合

19、模型对序列做5期预测,结果如图2-10:图2-11 2009-2013我国铁路货运量预测实验三美国月度事故死亡数据分析据美国国家平安委员会统计,19731978年美国月度事故死亡数据如表3-1所示。表3-1时间死亡人数时间死亡人数时间死亡人数1973年1月90071975年1月81621977年1月77921973年2月81061975年2月73061977年2月69571973年3月89281975年3月81241977年3月77261973年4月91371975年4月78701977年4月81061973年5月100171975年5月93871977年5月88901973年6月108261

20、975年6月95561977年6月92991973年7月113171975年7月100931977年7月106251973年8月107441975年8月96201977年8月93021973年9月97131975年9月82851977年9月83141973年10月99381975年10月84331977年10月88501973年11月91611975年11月81601977年11月82651973年12月89271975年12月80341977年12月87961974年1月77501976年1月77171978年1月78361974年2月69811976年2月74611978年2月689219

21、74年3月80381976年3月77761978年3月77911974年4月84221976年4月79251978年4月81291974年5月87141976年5月86341978年5月91151974年6月95121976年6月89451978年6月94341974年7月101201976年7月100781978年7月104841974年8月98231976年8月91791978年8月98271974年9月87431976年9月80371978年9月91101974年10月91291976年10月84881978年10月90701974年11月87101976年11月78741978年11月

22、86331974年12月86801976年12月86471978年12月9240请选择适当模型拟合该序列的开展。3.1 实验目的掌握用SAS软件对数据进展相关性分析,掌握对非平稳时间序列的随机分析,选择适宜模型,拟合序列开展。3.2 实验原理在SAS系统中有一个AUTOREG程序,可以进展残差自相关回归模型拟合。残差自回归模型的构思是首先通过确定性因素分解方法提取序列中主要确实定性信息:1式中,为趋势效应拟合;为季节效应拟合。考虑到因素分解方法对确定性信息的提取可能不够充分,因而需要进一步检验残差序列的自相关性。如果检验结果显示残差序列的自相关性不显著说明确定性回归模型1对信息的提取比拟充分,

23、可以停顿分析。如果检验结果显示残差序列的自相关显著,说明确定性回归模型1对信息的提取不充分,这时可以考虑对残差序列拟合自回归模型,进一步提取相关信息:这样构造的模型:,这就是自回归模型。3.3 实验容首先建立数据集和绘制时序图参照实验一,接下来建立因变量关于时间的回归模型。主要程序如下:proc autoreg data=e*ample4_3;model death=time/ dwprob;输出如下三方面结果:普通最小二乘估计结果、回归误差分析、最终拟合模型,详细分析见下面的实验过程。3.4 实验过程1绘制时序图图3-1 19731978年美国月度事故死亡数据的时序图时序图显示,有一定规律性

24、的波动,所以考虑使用误差自回归模型拟合该序列的开展。图3-2 序列关于变量的线性回归模型的最小二乘估计结果输出结果显示,DW统计量的值等于0.6020,输出概率显示残差序列显著正相关,所以应该考虑对残差序列拟合自相关模型。2建立关于时间的回归模型输出结果的详细分析:该局部输出信息包括误差平方和SSE、自由度DFE、均方误差MSE、根号均方误差Root MSE、SBC信息量、AIC信息量、回归局部相关系数平方Regress R-Square、总的相关系数平方Total R-Square,DW统计量及所有待估计参数的自由度、估计值、标准差、值和统计量的P值,如图3-3所示。图3-3 普通最小二乘估

25、计结果回归误差分析:该局部共输出四个信息:残差序列自相关图、逐步回归消除的不显著项报告、初步均方误差MSE、自回归参数估计值。如下图:图3-4 自回归误差分析输出结果输出的残差序列自相关图显示残差序列有非常显著的1阶正相关性。逐步回归消除报告显示除了延迟1阶的序列值显著自相关外,延迟其他阶数的序列值均不具有显著的自相关性,因此延迟25阶的自相关项被剔除。最终拟合模型如下列图3-5所示:图3-5 最终拟合模型输出结果拟合模型为:拟合图如图3-6图3-6 拟合效果图课程设计体会通过一周的实训,让我对应用时间序列这一门课程有了更深的理解和掌握,让我从前一段的理论知识学习进入到了应用与实践,实践出真知

26、,平常所学的理论只有通过实践,自己动手之后才能真正感觉到知识的乐趣。在整个实验过程中,所有的代码都是由我来负责编写及修改的,同时,我也负责对自己用代码得出的结果进展截图以及进展结果分析。实验一要求我们绘制时序图,判平稳、进展纯随机性检验、绘制样本自相关图、模型识别以及模型定阶。通过观察时序图的是否具有明显的趋势性或周期性来得出模型是否平稳;样本自相关图显示出来的性质可以检验我们通过时序图得出的结论是否正确,之后的纯随机性检验是为了确定平稳序列是否值得我们继续分析下去;之后进展相对最优定阶,当然这个定阶,只能作为定阶参考,因为使用这种方法定阶未必比经历定阶准确,之后得出拟合模型的具体形式及进展序

27、列预测。实验二是建立在实验一的根底上来做的,实验二我们选用的是ARIMA模型来做的,但是与实验一不同的是,实验二对模型进展了差分运算,因为差分运算可以将一个非平稳序列转化平稳序列,之后对差分序列进展ARMA模型拟合,这样结合实验一和实验二我们便可以得出实验二模型。实验三我们选择的是残差自回归模型进展拟合的,通过查阅,我知道了残差自回归模型是一种拟合非平稳时间序列的方法,它既能提取序列确实定性,,又能提取其随机性信息,不仅提高了模型的拟合精度,同时也使的结果变得更实际,也更易解释。但是在实际操作的过程中,我发现这个模型拟合确实比其他模型拟合难,以至于自己对得出的结果都无法肯定对错。通过三个实验,

28、只能说让我初步的了解到了这门课的有意思之处,同时,也让我对SAS这个软件有了初步的认知,就比方说在操作过程中一个不显眼的小字符错了,程序就会一遍遍的报错,但是在实际操作过程中,我们又非常容易无视掉这些,从而导致我们有时候会花费许多时间在这上面。所以我们平常思考问题做事情都要认真严谨。当然在整个实训过称中,要非常感教师对我们的教诲,通过教师的指导,才能让我们顺利的完成这次实训。为期一周的实训已经完毕了,但由于端午节放假,实训时间就缩短为了3天,所以时间上很紧。但是我们还是完成了试验,收获了很多,一方面学习到了以前没有用过的SAS软件,另一方面把所学的时间序列分析在实际中得到了应用,还有团队合作能

29、力得到了加强。第一天教师介绍了实训的软件SAS,并讲了一些根底知识和根本的操作步骤,并把时间序列的知识进展了大致的回忆。接下来上机做了一些简单的练习,练习了一下SAS的简单操作步骤,知道了怎么把数据导入数据集,接着练习了第二章的课后习题,通过输出的序列的时序图和序列自相关图来判断该序列的平稳性和纯随机性。在这个过程中需要调试程序,刚开场输入了课本上的程序,但运行有错误,仔细查看不是字母打错就是缺少标点符号,经过几次不断地改良,得到了正确的结果。第二天教师讲解了平稳性序列的分析,对建模步骤和具体要用到的函数做了详细说明,由于是三个人合作完成一份实验,所以我的工作就是了解整个试验建模的过程和思想然

30、后编写文档,把我队友软件输出的结果加以分析。这是三个人完成的第一个试验,所以速度上不是很快。在期间也遇到了很多问题,比方我们对模型的选择、对结果的分析都存在争议,但最后都得到了解决。第三天时间更加的紧,由于昨天一天做了有个试验,可是一共有三个试验,所以在第三天也就是最后一天要完成另外两个试验。这两个试验是第四章非平稳序列的随机分析,好在有了实验一的根底,程序就相对简单了一些,但我编辑文档的工作量就很大。在我和队友交流了经过调试后要选用的模型和结果分析后我就开场了两个试验的文档编辑工作。期间有对自己所选模型是否是最适宜的模型产生过疑心,但通过和同学教师的交流得到了解决。最后的一步工作就是对整个文

31、档的排版,因为去年参见过数学建模,所以在排版方面还有一定的根底,按照实验报告的格式进展了排版。总结一下,就我自己而言之前对时间序列这门课的掌握程度还不高,通过实训得到了提高,但平心而论对知识的把握还是不够完善和系统,希望以后的学习中能得到提高。还要感教师,对我们完成试验的帮助和对疑问的解答,教师对我们真的是认真负责,教师!经过一周的学习与实践,应用时间序列分析这门科学让我受益颇多。首先实践阶段第一个接触的就是SAS软件,在SAS系统中有一个专门进展计量经济与时间序列分析的模块。同时,由于SAS系统具有全球一流的数据仓库功能,因此在进展海量数据的时间序列分析时具有很大的优势。而在学习SAS软件时

32、遇到了不少的障碍,经过教师的讲解后还是有许多功能不是太了解,导致在进展实践操作时出了不少的错误,后来经过咨询教师解决了问题。在除了学习SAS软件外,我们需要进一步掌握的是时间序列中的一些案例模型。在进展分析时,有许多都用到了ARMA模型,这时我们就需要结合理论知识与SAS。其中拟合序列的开展,确定并检验序列的平稳性等等都是需要解决的问题。在解决这些问题时,每一步都是一个需要细心与耐心的过程。当其中任何一处出现小的失误都会使结果出现错误,进而解决不了该问题。可以说这次实训不仅使我学到了知识,丰富了经历。也帮助我缩小了实践和理论的差距。我收获了很多,一方面学习到了许多以前没学过的专业知识与知识的应

33、用,另一方面还提高了自己动手的能力。本次实训,是对我能力的进一步锻炼,也是一种考验。从中获得的诸多收获,也是很可贵的,是非常有意义的。在实训中我学到了许多新的知识。是一个让我把书本上的理论知识运用于实践中的好时机,原来,学的时候感慨学的容太难懂,现在想来,有些其实并不难,关键在于理解。在这次实训中还锻炼了我其他方面的能力,提高了我的综合素质。首先,它锻炼了我做实验的能力,提高了独立思考问题、自己动手操作的能力,在工作的过程中,复习了以前学习过的知识,并掌握了一些应用知识的技巧等。其次,实训中的工程作业也使我更加有团队精神。这次实训将会有利于我更好的适应以后的工作。我会把握和珍惜实训的时机,在未

34、来的工作中我会把学到的理论知识和实践经历不断的应用到实际工作中,为实现理想而努力。附录实验一程序:data e*ample3_20;input people;time=intn* (month,01sep1971d,_n_-1);format time monyy7.;cards;63.2 67.9 55.8 49.5 50.2 55.4 49.9 45.3 48.1 61.7 55.2 53.1 49.5 59.9 30.6 30.4 33.8 42.1 35.8 28.4 32.9 44.1 45.5 36.6 39.5 49.8 48.8 29.0 37.3 34.2 47.6 37.3

35、 39.2 47.6 43.9 49.0 51.2 60.8 67.0 48.9 65.4 65.4 67.6 62.5 55.1 49.6 57.3 47.3 45.5 44.5 48.0 47.9 49.1 48.8 59.4 51.6 51.4 60.9 60.9 56.8 58.6 62.1 64.0 60.3 64.6 71.0 79.4 59.9 83.4 75.4 80.2 55.9 58.5 65.2 69.5 59.1 21.5 62.5 170.0 -47.4 62.2 60.0 33.1 35.3 43.4 42.7 58.4 34.4 ;PROC ARIMA DATA=

36、E*AMPLE3_20; /*pingwen*ingjianyan*/IDENTIFY VAR =people;IDENTIFY VAR =people nlag=8 minic p= (0:5) q =(0:5);proc print data=e*ample3_20;/*PROC GPLOT DATA=E*AMPLE3_20; */*plot people*time;*/*symbol c=black v=dot i=join; */proc arima data=e*ample3_20;identify var=people stationarity= (adf=1);/*danweig

37、enbujianyan*/ESTIMATE p=1 Q=3 ; /*mo*ingnihe*/forecast lead=5 id=time out=results;/*yuce5nian*/proc gplot data=results;/*ulienihejiweilai5niande yucetu */plot people*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=black i=none v=star;symbol2 c=black i=join v=dot;symbol3 c=black i=join

38、 v=dot l=32;run;实验二程序:data e*ample4_2;input huoyunliang;difhuoyunliang=dif(huoyunliang);time=intn* (year,01JAN1949d,_n_-1);format time monyy7.;cards;5589 9983 11083 13217 1613119288 19376 24605 27421 3810954410 67219 44988 35261 3641841786 49100 54951 43089 4209553120 68132 76471 80873 8311178772 88955 84066 95309 110119111893 111279 107673 113495 118784124074 130709

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论