版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE 丰台区2011年高三年级第二学期数学统一练习(二)数 学(理科)参考答案2011.5一、选择题:本大题共8小题,每小题5分,共40分题号12345678答案CBCDBACD二、填空题:本大题共6小题,每小题5分,共30分93 1067 11,1212 13 146,注:两个空的填空题第一个空填对得2分,第二个空填对得3分三、解答题:本大题共6小题,共80分解答应写出文字说明,演算步骤或证明过程15.(本小题共13分)已知等差数列的前项和为,a2=4, S5=35()求数列的前项和;()若数列满足,求数列的前n项的和解:()设数列的首项为a1,公差为d 则 , 5分 前项和 7分 ()
2、, ,且b1=e 8分当n2时,为定值, 10分 数列构成首项为e,公比为e3的等比数列 11分 13分数列的前n项的和是16.(本小题共14分)HCA1A2B1B2L1L2A3张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,()若走L1路线,求最多遇到1次红灯的概率;()若走L2路线,求遇到红灯次数的数学期望;()按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由解:()设走L1
3、路线最多遇到1次红灯为A事件,则 4分所以走L1路线,最多遇到1次红灯的概率为()依题意,的可能取值为0,1,2 5分, , 8分随机变量的分布列为:012P 10分()设选择L1路线遇到红灯次数为,随机变量服从二项分布,所以 12分因为,所以选择L2路线上班最好 14分17.(本小题共13分)ABDEC已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点沿直线BD将BCD翻折成,使得平面平面ABD()求证:平面ABD;()求直线与平面所成角的正弦值;()求二面角的余弦值证明:()平行四边形ABCD中,AB=6,AD=10,BD=8, 沿直线BD将BCD翻折成 可知CD
4、=6,BC=BC=10,BD=8,即, 故 2分 平面平面,平面平面=,平面, 平面 5分()由()知平面ABD,且,如图,以D为原点,建立空间直角坐标系 6分ABDECxyz则,E是线段AD的中点,在平面中,设平面法向量为, ,即,令,得,故 8分设直线与平面所成角为,则 9分 直线与平面所成角的正弦值为 10分()由()知平面的法向量为, 而平面的法向量为, , 因为二面角为锐角,所以二面角的余弦值为 13分18.(本小题共13分)已知函数()若在处取得极值,求a的值;()求函数在上的最大值解:(), 函数的定义域为 1分 3分在处取得极值, 即, 5分当时,在内,在内,是函数的极小值点
5、6分(), 7分 x, ,在上单调递增;在上单调递减, 9分当时, 在单调递增, ; 10分当,即时,在单调递增,在单调递减,; 11分当,即时,在单调递减, 12分综上所述,当时,函数在上的最大值是; 当时,函数在上的最大值是;当时,函数在上的最大值是13分19.(本小题共14分) 已知抛物线P:x2=2py (p0)()若抛物线上点到焦点F的距离为()求抛物线的方程;()设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;()设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F解:()()由抛物线定义可知,抛物线
6、上点到焦点F的距离与到准线距离相等, 即到的距离为3; ,解得 抛物线的方程为 4分()抛物线焦点,抛物线准线与y轴交点为,显然过点的抛物线的切线斜率存在,设为,切线方程为由, 消y得, 6分,解得 7分切线方程为 8分()直线的斜率显然存在,设:,设,由 消y得 且 ,; , 直线:, 与联立可得, 同理得 10分 焦点, , 12分 以为直径的圆过焦点 14分20.(本小题共13分)用表示不大于的最大整数令集合,对任意和,定义,集合,并将集合中的元素按照从小到大的顺序排列,记为数列 ()求的值;()求的值; ()求证:在数列中,不大于的项共有项解:()由已知知 所以 4分()因为数列是将集合中的元素按从小到大的顺序排成而成,所以我们可设计如下表格km1234512345从上表可知,每一行从左到右数字逐渐增大,每一列从上到下数字逐渐增大且所以 8分()任取,若,则必有即在()表格中不会有两项的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年施工企业质量管理体系施工合同台账范本3篇
- 2025年东营c1货运从业资格证考试题下载
- 2024年某航空公司飞机采购及维护合同
- 2024年合同风险防范与控制策略2篇
- 海口市教育培训机构租赁合同
- 绿色建筑精装修施工合同
- 风景区道路铺设施工合同
- 工程合同材料供应管理
- 2025电梯门套安装合同范本
- 甘肃省2024-2025学年高三上学期期中考试历史试题(解析版)
- 2023年中国铁路武汉局集团有限公司招聘大专(高职)学历笔试真题
- 中考英语复习听说模拟训练(一)课件
- 公立医院创新管理薪酬激励方案
- 药品经营使用和质量监督管理办法2024年宣贯培训课件
- 旅社承包合同样本
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 病句的辨析与修改-2023年中考语文一轮复习(原卷版)
- 如何高效学习学习通超星期末考试答案章节答案2024年
- 幼儿园视频监控管理制度
- 主动脉瓣关闭不全
- 2024国家开放大学《企业信息管理》形成性考核1-4答案
评论
0/150
提交评论