2022届江西省永修中考数学对点突破模拟试卷含解析_第1页
2022届江西省永修中考数学对点突破模拟试卷含解析_第2页
2022届江西省永修中考数学对点突破模拟试卷含解析_第3页
2022届江西省永修中考数学对点突破模拟试卷含解析_第4页
2022届江西省永修中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1下列四个几何体,正视图与其它三个不同的几何体是

2、()ABCD2如图,将ABC绕点C(0,-1)旋转180得到ABC,设点A的坐标为(a,b),则点A的坐标为( )A(-a,-b)B(-a,-b-1)C(-a,-b+1)D(-a,-b-2)3如果(,均为非零向量),那么下列结论错误的是()A/B-2=0C=D4某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD5某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A152元B156元C160元D190元6一个圆锥的底面半径为,母线长为6,则此圆

3、锥的侧面展开图的圆心角是( )A180B150C120D907如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ8某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花如果有ABEFDC,BCGHAD,那么下列说法错误的是()A红花、绿花种植面积一定相等B紫花、橙花种植面积一定相等C红花、蓝花种植面积一定相等D蓝花、黄花种植面积一定相等9如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )A线段EF的长逐

4、渐增长B线段EF的长逐渐减小C线段EF的长始终不变D线段EF的长与点P的位置有关10两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_12如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高_米(结果保留根号)13如图,A、B是反比例函数y(k

5、0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_14如图,ABCD,BE交CD于点D,CEBE于点E,若B=34,则C的大小为_度15某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_元16已知线段AB=2cm,点C在线段AB上,且AC2=BCAB,则AC的长_cm三、解答题(共8题,共72分)17(8分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后

6、的图形;填空:面积为 .18(8分)如图,抛物线y=ax2+ax12a(a0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N(1)求点A、B的坐标;(2)若BN=MN,且SMBC=,求a的值;(3)若BMC=2ABM,求的值19(8分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷某共享单车公司一月投入部分自行车进入市场,一月底发现

7、损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值20(8分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=C

8、AC1,求点P的横坐标21(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?22(10分)先化简后求值:已知:x=2,求的值23(12分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年

9、级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率24为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦爱国情成才志”中华经典诗文诵读比赛九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设

10、计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止根据以上规则回答下列问题:(1)求一次性摸出一个黄球和一个白球的概率;(2)判断该游戏是否公平?并说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据几何体的三视图画法先画出物体的正视图再解答.【详解】解:A、B、D三个

11、几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.2、D【解析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可【详解】根据题意,点A、A关于点C对称,设点A的坐标是(x,y),则=0,=-1,解得x=-a,y=-b-2,点A的坐标是(-a,-b-2)故选D【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A关于点C成中心对称是解题的关键3、B【解析】试题解析:向量最后的差应该还是向

12、量. 故错误.故选B.4、A【解析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间【详解】现在每天生产x台机器,则原计划每天生产(x30)台机器依题意得:,故选A【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5、C【解析】【分析】设进价为x元,依题意得2400.8-x=20 x,解方程可得.【详解】设进价为x元,依题意得2400.8-x=20 x解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.6、B

13、【解析】解:,解得n=150故选B考点:弧长的计算7、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍8、C【解析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝

14、花和黄花种植面积一样大,紫花和橙花种植面积一样大故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.9、C【解析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C考点:1、矩形性质,2、勾股定理,3、三角形的中位线10、C【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1+1+, 水之和为:+,混合液中的酒精与水的容积之比为:(+)(+),故选C【点睛】本题主要考查分式

15、的混合运算,找到相应的等量关系是解决本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要

16、将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.12、【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可解:如图所示,在RtABC中,tanACB=,BC=,同理:BD=,两次测量的影长相差8米,=8,x=4,故答案为4“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案 13、2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E则ADBE,AD=2BE=,B

17、、E分别是AC、DC的中点ADCBEC,BE:AD=1:2,EC:CD=1:2,EC=DE=a,OC=3a,又A(a, ),B(2a, ),SAOC=ADCO=3a =1,解得:k=214、56【解析】解:ABCD, 又CEBE,RtCDE中, 故答案为56.15、17【解析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.【详解】解:1-30%-50%=20%,.【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.16、【解析】设AC=x,则BC=2-x,根据AC2=BCAB列方程求解即可.【详解】解:设AC=x,则BC=2-x,根据AC2=

18、BCAB可得x2=2(2-x),解得:x=或(舍去).故答案为.【点睛】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.三、解答题(共8题,共72分)17、(1)详见解析;(2)详见解析;(3).【解析】(1)分别画出A、B、C三点的对应点即可解决问题;(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可(3)求得所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,即为所求作;(2)如图,即为所求作;(3)面积=44-24-22-24=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图

19、形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.18、(1)A(4,0),B(3,0);(2);(3).【解析】(1)设y=0,可求x的值,即求A,B的坐标;(2)作MDx轴,由COMD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据SBMC=,可求a的值;(3)过M点作MEAB,设NO=m,k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果【详解】(1)设y=0,则0=ax2+ax12a (a0),x1=4,x2=3,A(4,0)

20、,B(3,0)(2)如图1,作MDx轴,MDx轴,OCx轴,MDOC,=且NB=MN,OB=OD=3,D(3,0),当x=3时,y=6a,M(3,6a),MD=6a,ONMD,ON=3a,根据题意得:C(0,12a),SMBC=,(12a+3a)6=,a=,(3)如图2:过M点作MEAB,MEAB,EMB=ABM且CMB=2ABM,CME=NME,且ME=ME,CEM=NEM=90,CMEMNE,CE=EN,设NO=m,=k(k0),MEAB,=k,ME=3k,EN=km=CE,EO=km+m,CO=CE+EN+ON=2km+m=12a,即,M(3k,km+m),km+m=a(9k23k12)

21、,(k+1)=(k+1)(9k12),=9k-12,k=,.【点睛】本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大19、(1)7000辆;(2)a的值是1【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x(7500110)10%x,解

22、得x7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,7500(11%)+110(1+4a%)(1a%)=7752,化简,得a2250a+4600=0,解得:a1=230,a2=1,解得a80,a=1,答:a的值是1【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.20、 (1)y12x2x4(2)点M的坐标为(2,4)(3)83【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解

23、析式;(2) 连接OM,设点M的坐标为m,12m2-m-4.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAM (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC42,CDC1D2,AD42232;设点Pn,12n2-n-4 ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得PQC1【详解】(1)抛物线的解析式为y12 (x4)(x2)12x(2)连接OM,设点M的坐标为m,1由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM1

24、2 4m12 4m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90,CDC190,AC42,CDC1D2,AD42232,设点Pn,1PABCAC1,AQPADC1,PAQC1AD,PQC即12n2即3n26n2482n,或3n26n24(82n),解得n83,或n4点P的横坐标为83或4【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.21、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【解析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论