山西省吕梁市兴康宁2022年中考数学考试模拟冲刺卷含解析及点睛_第1页
山西省吕梁市兴康宁2022年中考数学考试模拟冲刺卷含解析及点睛_第2页
山西省吕梁市兴康宁2022年中考数学考试模拟冲刺卷含解析及点睛_第3页
山西省吕梁市兴康宁2022年中考数学考试模拟冲刺卷含解析及点睛_第4页
山西省吕梁市兴康宁2022年中考数学考试模拟冲刺卷含解析及点睛_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列说法不正确的是( )A某种彩票中奖的概率是,买1000张该种彩票一定会中奖B了解一批电视机的使用寿命适合用抽样调查C若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件2在实数,0,4中,

2、最大的是()AB0CD43在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A20B25C30D354如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个5在下列各平面图形中,是圆锥的表面展开图的是( )ABCD62cos 30的值等于()A1BCD27如图

3、,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A1BC2D8利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD9我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻将423公里用科学记数法表示应为()米A42.3104B4.23102C4.23105D4.2310610如图,ADE绕正方形ABCD的顶点A顺时针旋转90,得ABF,连接EF交AB于H,有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;A

4、FE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B3个C4个D5个二、填空题(共7小题,每小题3分,满分21分)11对于任意不相等的两个实数,定义运算如下:,如32.那么84 12已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_13从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_14如图1,在平面直角坐标系中,将ABCD放置在第一象限,且ABx轴,直线yx从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_15已知xy=3

5、,那么的值为_ 16函数自变量x的取值范围是 _.17一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_三、解答题(共7小题,满分69分)18(10分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计

6、图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率19(5分)计算:(1)(2)20(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB2m,它的影子BC1.6m,木竿PQ落在地面上的影子PM1.8m,落在墙上的影子MN1.1m,求木竿PQ的长度21(10分)(感知)如图,四边形ABCD、CEFG均为正方形可知BE=DG(拓展)如图

7、,四边形ABCD、CEFG均为菱形,且A=F求证:BE=DG(应用)如图,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上若AE=2ED,A=F,EBC的面积为8,菱形CEFG的面积是_(只填结果)22(10分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60方向上,航行12海里到达B点,这时测得小岛P在北偏东45方向上如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由23(12分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线

8、的解析式;(2)若点P在抛物线上,且SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值24(14分)如图,AB为O的直径,直线BMAB于点B,点C在O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为O的切线交BM于点F(1)求证:CFDF;(2)连接OF,若AB10,BC6,求线段OF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不

9、一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确故选A考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件2、C【解析】根据实数的大小比较即可得到答案.【详解】解:161725,45,04,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.3、B【解析】设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:,当时,(

10、亿),400-375=25,该行可贷款总量减少了25亿.故选B.4、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OHD=ODH,OH=OD,OE=OD=OH,故正确;

11、EBH=9067.5=22.5,EBH=OHD,又BE=DH,AEB=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5、C【解析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆【详解】解:圆锥的展开图是由一个扇形和一个圆形

12、组成的图形故选C【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键注意圆锥的平面展开图是一个扇形和一个圆组成6、C【解析】分析:根据30角的三角函数值代入计算即可.详解:2cos30=2=故选C点睛:此题主要考查了特殊角的三角函数值的应用,熟记30、45、60角的三角函数值是解题关键.7、B【解析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故=故选:B【点睛】本题考查了正多边形的性质,正确作出辅助线是关键8、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这

13、样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.9、C【解析】423公里=423 000米=4.23105米

14、故选C10、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90.AEAF,故此选项正确;AFE=AEF=DAE+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FHFE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的

15、性质是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据新定义的运算法则进行计算即可得.【详解】,84=,故答案为.12、1【解析】【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得,据此建立关于x的方程,解之可得【详解】设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、AC的中点,DE是ABC的中位线,DEBC,且DE=BC,ADEABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的

16、平方的性质13、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比14、1【解析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经

17、过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=2 ,作DFAB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB144,当直线经过点D,设其交AB于点E,则DE2 ,作DFAB于点F,yx于x轴负方向成45角,且ABx轴,DEF45,DFEF,在直角三角形DFE中,DF2+EF2DE2,2DF21DF2,那么ABCD面积为:ABDF421,故答案为1【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关

18、键在于利用好辅助线15、2 【解析】分析:先化简,再分同正或同负两种情况作答详解:因为xy=3,所以x、y同号,于是原式=,当x0,y0时,原式=2;当x0,y0时,原式=2故原式=2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.16、x1且x1【解析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:,解得x1,且x1,即:自变量x取值范围是x1且x1故答案为x1且x1【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件17、 【解析】用黑球的个数除以总球的个数即可得出黑球的概率

19、【详解】解:袋子中共有5个球,有2个黑球,从袋子中随机摸出一个球,它是黑球的概率为;故答案为【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=三、解答题(共7小题,满分69分)18、(1)60、90;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)

20、用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为2440%=60人,扇形统计图中C所对应扇形的圆心角度数是360=90, 故答案为60、90;(2)D类型人数为605%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有80040%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或

21、树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.19、(1);(2)1【解析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算【详解】解:(1)原式=;(2)原式【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则20、木竿PQ的长度为3.35米【解析】过N点作NDPQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长试题解析:【详解】解:过N点作NDPQ于D,则四边形DPMN为矩形,DNPM1.8m,D

22、PMN1.1m,QD2.25,PQQDDP 2.251.13.35(m)答:木竿PQ的长度为3.35米【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键21、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得BCEDCG,则可得BE=DG;应用:由ADBC,BE=DG,可得SABE+SCDE=SBEC=SCDG=8,又由AE=3ED,可求得CDE的面积,继而求得答案试题解析:探究:四边形ABCD、四边形CEFG均为菱形,BC=CD,CE=CG,BCD=A,ECG=FA=F,BCD=ECGBCD-ECD=E

23、CG-ECD,即BCE=DCG在BCE和DCG中, BCEDCG(SAS),BE=DG应用:四边形ABCD为菱形,ADBC,BE=DG,SABE+SCDE=SBEC=SCDG=8,AE=3ED,SCDE= ,SECG=SCDE+SCDG=10S菱形CEFG=2SECG=20.22、有触礁危险,理由见解析.【解析】试题分析:过点P作PDAC于D,在RtPBD和RtPAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险试题解析:有触礁危险理由:过点P作PDAC于D设PD为x,在RtPBD

24、中,PBD=90-45=45BD=PD=x在RtPAD中,PAD=90-60=30AD=AD=AB+BDx=12+xx=6(+1)18渔船不改变航线继续向东航行,有触礁危险【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键23、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论