版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图数轴的A、B、C三点所表示的数分别为a、b、c若|ab|3,|bc|5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A在A的左边B介于A
2、、B之间C介于B、C之间D在C的右边2如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米3有一种球状细菌的直径用科学记数法表示为2.16103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米4如图,交于点,平分,交于. 若,则的度数为( ) A35oB45oC55oD65o5下列计算正确的是( )Aa+a=
3、a4B(-a2)3=a6C(a+1)2=a2+1D8ab2(-2ab)=-4b6下列选项中,可以用来证明命题“若a2b2,则ab“是假命题的反例是()Aa2,b1Ba3,b2Ca0,b1Da2,b17图为一根圆柱形的空心钢管,它的主视图是( )ABCD8如图,直线 AB 与 MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )A4 对 B5 对 C6 对 D7 对9如图,在热气球C处测得地面A、B两点的俯角分别为30、45,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米B200米C220米D100米10如图,BCDE,若A=35
4、,E=60,则C等于()A60B35C25D2011如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D5412地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A64105B6.4105C6.4106D6.4107二、填空题:(本大题共6个小题,每小题4分,共24分)13已知关于x的方程x223xk0有两个相等的实数根,则k的值为_14我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺
5、,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.15已知O的面积为9cm2,若点O到直线L的距离为cm,则直线l与O的位置关系是_16已知直线mn,将一块含有30角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若1=20,则2=_度17半径为2的圆中,60的圆心角所对的弧的弧长为_.18计算:的结果为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的直径,点C是AB延长线上的点,CD与O相切于点D,连结BD、AD求证;BDCA若C45,O的半径为1,直接写出AC的长20(6
6、分)如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE求证:DE是O的切线;若AE=6,D=30,求图中阴影部分的面积21(6分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹例如:动点P的坐标满足(m,m1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x1的图象即点P的轨迹就是直线y=x1(1)若m、n满足等式mnm=6,则(m,n1)在平面直角坐标系xOy中的轨迹是 ;(2)若点P(x,y)到点A(0,1)的距离与到直线y=1的距离相等,求点P的轨迹;(3)若抛物线y
7、=上有两动点M、N满足MN=a(a为常数,且a4),设线段MN的中点为Q,求点Q到x轴的最短距离22(8分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.23(8分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第
8、二批收购时价格变为500元/吨,这两批蔬菜共用去16万元(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?24(10分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)25(10分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点
9、的切线交OP于点C求证:CBP=ADB若OA=2,AB=1,求线段BP的长.26(12分)(1)化简:(2)解不等式组27(12分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(1,1),B(1,1),C(1,1),D(1,1).(1)在,中,正方形ABCD的“关联点”有_;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别
10、相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=1、b=1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论解析:|ab|=3,|bc|=5,b=a+3,c=b+5,原点O与A、B的距离分别为1、1,a=1,b=1,b=a+3,a=1,b=1,c=b+5,c=1点O介于B
11、、C点之间故选C点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键2、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:,解得:x=6,BH=6米,CH=米,BG=GHBH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939
12、.4(米)故选D3、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、D【解析】分析:根据平行线的性质求得BEC的度数,再由角平分线的性质即可求得CFE 的度数.详解: 又EF平分BEC,.故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关
13、键.5、D【解析】各项计算得到结果,即可作出判断【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键6、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题由此即可解答.【详解】当a2,b1时,(2)212,但是21,a2,b1是假命题的反例故选A【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法7、B【解析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
14、故选B.8、C【解析】由题意,AQNP,MNBQ,ACMDCN,CDNBDP,BPDBQA,ACMABQ,DCNABQ,ACMDBP,所以图中共有六对相似三角形故选C9、D【解析】在热气球C处测得地面B点的俯角分别为45,BD=CD=100米,再在RtACD中求出AD的长,据此即可求出AB的长【详解】在热气球C处测得地面B点的俯角分别为45,BDCD100米,在热气球C处测得地面A点的俯角分别为30,AC2100200米,AD100米,ABAD+BD100+100100(1+)米,故选D【点睛】本题考查了解直角三角形的应用-仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形10、C
15、【解析】先根据平行线的性质得出CBE=E=60,再根据三角形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60,A=35,C+A=CBE,C=CBEC=6035=25,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.11、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质12、C【解析】由科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数
16、的绝对值1时,n是负数【详解】解:6400000=6.4106,故选C点睛:此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、-3【解析】试题解析:根据题意得:=(23)2-41(-k)=0,即12+4k=0,解得:k=-3,14、1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺)故答案为1考点:平面展开最短路径问题15、相离【解析】设圆O的
17、半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离比较即可【详解】设圆O的半径是r,则r2=9,r=3,点0到直线l的距离为,3,即:rd,直线l与O的位置关系是相离,故答案为:相离.【点睛】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当rd时相离;当r=d时相切;当rd时相交16、1【解析】根据平行线的性质即可得到2=ABC+1,据此进行计算即可【详解】解:直线mn,2=ABC+1=30+20=1,故答案为:1【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键17、【解析】根据弧长公式可得:=,故答案为.18、【解析】分析:根据二次根式的性质先化简,
18、再合并同类二次根式即可.详解:原式=3-5=2 点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结如图,与相切于点D,是的直径,即(2)解:在中, .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.20、(1)证明见解析;(2)阴影部分的面积为【解析】(1)连接OC,先证明OAC=OCA,进而得到O
19、CAE,于是得到OCCD,进而证明DE是O的切线;(2)分别求出OCD的面积和扇形OBC的面积,利用S阴影=SCODS扇形OBC即可得到答案【详解】解:(1)连接OC, OA=OC, OAC=OCA, AC平分BAE, OAC=CAE,OCA=CAE, OCAE, OCD=E, AEDE, E=90, OCD=90, OCCD,点C在圆O上,OC为圆O的半径, CD是圆O的切线;(2)在RtAED中, D=30,AE=6, AD=2AE=12, 在RtOCD中,D=30,DO=2OC=DB+OB=DB+OC, DB=OB=OC=AD=4,DO=8,CD=SOCD=8, D=30,OCD=90,
20、DOC=60, S扇形OBC=OC2=, S阴影=SCODS扇形OBC S阴影=8,阴影部分的面积为821、(1);(2)y=x2;(3)点Q到x轴的最短距离为1【解析】(1)先判断出m(n1)=6,进而得出结论;(2)先求出点P到点A的距离和点P到直线y=1的距离建立方程即可得出结论;(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论【详解】(1)设m=x,n1=y,mnm=6,m(n1)=6,xy=6, (m,n1)在平面直角坐标系xOy中的轨迹是故答案为:;(2)点P(x,y)到点A(0,1),点P(x,y)到点A(0,1)的距离的平方为x2+(y1)2,点P
21、(x,y)到直线y=1的距离的平方为(y+1)2,点P(x,y)到点A(0,1)的距离与到直线y=1的距离相等,x2+(y1)2=(y+1)2, (3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),线段MN的中点为Q的纵坐标为 x24kx4b=0,x1+x2=4k,x1x2=4b, 点Q到x轴的最短距离为1【点睛】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键22、(1)y=140 x+6000;(2)三种,答案见解析;(3)选择方案进货时,经销商可获利最大,最大利润是13000元【解析】(1)根
22、据利润y=(A售价A进价)x+(B售价B进价)(100 x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可【详解】解:(1)y=(900700)x+(160100)(100 x)=140 x+6000.由700 x+100(100 x)40000得x50.y与x之间的函数关系式为y=140 x+6000(x50)(2)令y12600,即140 x+600012600,解得x47.1.又x50,经销商有以下三种进货方案:方案A品牌(块)B品牌(块)4852
23、49515050(3)1400,y随x的增大而增大.x=50时y取得最大值.又14050+6000=13000,选择方案进货时,经销商可获利最大,最大利润是13000元【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用23、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1【解析】(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨构建方程组即可解决问题(2)设精加工x吨,利润为w元,则粗加工(100-x)吨利润w=800 x+400(200 x)=400 x+80000,再由x3(100-x),解得x150,即可解决问题
24、【详解】(1)设第一次购进a吨,第二次购进b吨,解得 ,答:第一次购进40吨,第二次购进160吨;(2)设精加工x吨,利润为w元,w=800 x+400(200 x)=400 x+80000,x3(200 x),解得,x150,当x=150时,w取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.24、该雕塑的高度为(2+2)米【解析】过点C作CDAB,设CD=x,由CBD=45知BD=CD=x米,根据tanA=列出关于x的方程,解之可得【详解】解:如
25、图,过点C作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用25、(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到ABD=90,再根据切线的性质得到OBC=90,然后利用等量代换进行证明;(2)证明AOPABD,然后利用相似比求BP的长详(1)证明:连接OB,如图,AD是O的直径,ABD=90,A+ADB=90,BC为切线,OBBC,OBC=90,OBA+CBP=90,而OA=OB,A=OBA,CBP=ADB;(2)解:OPAD,POA=90,P+A=90,P=D,AOPABD,即,BP=1点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和相似三角形的判定与性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年消防报警系统升级清工合同标准文本3篇
- 年度印刷品、记录媒介复制品产业分析报告
- 无缝钢管施工方案
- 2025年金融理财产品销售合同修订与风险披露机制2篇
- 2025年度离婚财产分割协议书及无形资产评估范本3篇
- CISP0501信息安全法规、政策和标准-含网络安全法
- 2024离婚冷静期婚姻家庭关系咨询与辅导服务合同3篇
- 二零二五版反担保动产质押仓储管理服务合同2篇
- 路口施工方案
- 2025年生态旅游PPP项目合同范本3篇
- 2024年考研英语(一)真题及参考答案
- 2024年采购代发货合作协议范本
- 工业自动化设备维护保养指南
- 《向心力》参考课件4
- 2024至2030年中国膨润土行业投资战略分析及发展前景研究报告
- 【地理】地图的选择和应用(分层练) 2024-2025学年七年级地理上册同步备课系列(人教版)
- JBT 14588-2023 激光加工镜头 (正式版)
- 2024年四川省成都市树德实验中学物理八年级下册期末质量检测试题含解析
- 廉洁应征承诺书
- 2023年四川省成都市中考物理试卷真题(含答案)
- 泵车述职报告
评论
0/150
提交评论