2022届江苏省苏州市苏州地区校初中数学毕业考试模拟冲刺卷含解析_第1页
2022届江苏省苏州市苏州地区校初中数学毕业考试模拟冲刺卷含解析_第2页
2022届江苏省苏州市苏州地区校初中数学毕业考试模拟冲刺卷含解析_第3页
2022届江苏省苏州市苏州地区校初中数学毕业考试模拟冲刺卷含解析_第4页
2022届江苏省苏州市苏州地区校初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个2如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )ABCD3已知如图,ABC为直角三角形,C90,若沿图中虚线剪去C,则1+2等于()A315B270C180D1354如图,ABC中,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为5,则ABC的周长为( )A8B10C13D145如图所示几何体的主视图是( )ABCD6在下列交通标志中,是中心对称图

3、形的是()ABCD7下列运算正确的是()A(a3)2=a29B()1=2Cx+y=xyDx6x2=x38对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解9若一次函数的图像过第一、三、四象限,则函数( )A有最大值B有最大值C有最小值D有最小值10有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11中国的陆地面积约为9 600 000km2,把9 600 000用科

4、学记数法表示为 12如果一个正多边形每一个内角都等于144,那么这个正多边形的边数是_13数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_14关于的方程有两个不相等的实数根,那么的取值范围是_15如图,AB为0的弦,AB=6,点C是0上的一个动点,且ACB=45,若点M、N分别是AB、BC的中点,则MN长的最大值是_ 16函数的定义域是_.17关于的分式方程的解为负数,则的取值范围是_.三、解答题(共7小题,满分69分)18(10分)如图1,一枚质地均匀的正六面体

5、骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;设游戏者从圈A起跳.小贤随机掷一次骰子,求落回到圈A的概率P1.小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出他与小贤落回到圈A的可能性一样吗?19(5分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班

6、50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)20(8分)珠海某企业接到加工“无人船”某零件5000个的任务在加工完500个后,改进了技术,每天加工的零件数量是原来的1

7、.5倍,整个加工过程共用了35天完成求技术改进后每天加工零件的数量21(10分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0a20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?22(10分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变

8、为500元/吨,这两批蔬菜共用去16万元(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?23(12分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?

9、哪一种购买方案使销售文具所获利润最大?24(14分)如图 1,在等腰ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD在线段 AD 上任取一点 P,连接 PB,PE若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:x0123456y5.2 4.24.65.97.69.5说明:补全表格时,相关数值保留一位小数(参考数据:1.414,1.732,2.23

10、6)(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】3+3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.2、C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.3、B【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个

11、内角之和解答【详解】如图,1、2是CDE的外角,1=4+C,2=3+C,即1+2=2C+(3+4),3+4=180-C=90,1+2=290+90=270故选B【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和4、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90,SPBCBCPE424,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAPGS四边形AFPG,AGPG,AG,由切线长定理可知

12、:CECF,BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型5、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图6、C【解析】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C7、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详

13、解:A. (a3)2=a26a+9,故该选项错误;B. ()1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.8、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条

14、件进而求得不等式组的整数解9、B【解析】解:一次函数y=(m+1)x+m的图象过第一、三、四象限,m+10,m0,即-1m0,函数有最大值,最大值为,故选B10、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:共有6种等可能的结果,一次打开锁的有2种情况,一次打开锁的概率为:故选B点睛:本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比二、填空题(共7小题,每小题3分,满分2

15、1分)11、9.61【解析】将9600000用科学记数法表示为9.61故答案为9.6112、1【解析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可【详解】解:设正多边形的边数为n,由题意得,=144,解得n=1故答案为1【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键13、【解析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即,解得故

16、答案为:【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键14、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得=4-12m1且m1,求出m的取值范围即可详解:一元二次方程mx2-2x+3=1有两个不相等的实数根,1且m1,4-12m1且m1,m且m1,故答案为:m且m1点睛:本题考查了一元二次方程ax2+bx+c=1(a1,a,b,c为常数)根的判别式=b2-4ac当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根也考查了一元二次方程的定义15、3【解析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以

17、求得最大值【详解】解:因为点M、N分别是AB、BC的中点,由三角形的中位线可知:MN=AC,所以当AC最大为直径时,MN最大这时B=90又因为ACB=45,AB=6 解得AC=6MN长的最大值是3故答案为:3【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大16、x-1【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围详解:根据题意得:x+10,解得:x1 故答案为x1点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑: (1)当函数表达式是整式时,定义域可取全体实数; (2)当函数表达式是分式时

18、,考虑分式的分母不能为0; (1)当函数表达式是二次根式时,被开方数非负17、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a0,且1-a-1解得:a1且a2,故答案为: a1且a2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析三、解答题(共7小题,满分69分)18、(1)落回到圈A的概率P1=16;(2)可能性不一样.【解析】(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有

19、等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案【详解】(1)掷一次骰子有6种等可能的结果,只有掷的4时,才会落回到圈A,落回到圈A的概率P1=16;(2)列表得:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36种等可能的结果,当两次掷得

20、的数字之和为4的倍数,即(1,3)(2,2)(2,6)(3,1)(3,5)(4,4)(5,3)(6,2)(6,6)时,才可能落回到圈A,这种情况共有9种,p2=936=14,P1=16,可能性不一样【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比19、(4)A高中观点4 446;(4)456人;(4)16【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高中”观点的百分比即可得到选择“A

21、高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446;(4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50(4-60%-44%)=

22、508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=212=16考点:4列表法与树状图法;4用样本估计总体;4扇形统计图20、技术改进后每天加工1个零件【解析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得, 解得x=100, 经检验x=100是原方程的解,则改进后每天加工1答:技术改进后每天加工1个零件点睛:本题主要考查的是分式方程的应用,

23、属于基础题型根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验21、(1)甲种服装最多购进75件,(2)见解析.【解析】(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案【详解】(1)设购进甲种服装x件,由题意可知:80 x+60(100-x)7500,解得x75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1当0a10时,10-a0

24、,W随x增大而增大,当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;当a=10时,所以按哪种方案进货都可以;当10a20时,10-a0,W随x增大而减小当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键22、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1【解析】(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨构建方程组即可解决问题(2)设精加工x吨,利润为w元,则粗加工(100-x)吨利润w=800 x+400(200 x)=400 x+80000,再由x3(100-x),解得x150,即可解决问题【详解】(1)设第一次购进a吨,第二次购进b吨,解得 ,答:第一次购进40吨,第二次购进160吨;(2)设精加工x吨,利润为w元,w=800 x+400(200 x)=400 x+80000,x3(200 x),解得,x150,当x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论