




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列美丽的图案中,不是轴对称图形的是( )ABCD2已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x203
2、在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min)129136140145146148154158165175由此所得的以下推断不正确的是( )A这组样本数据的平均数超过130B这组样本数据的中位数是147C在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好4关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-5长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,
3、2500000000这个数用科学记数法表示为()A0.251010 B2.51010 C2.5109 D251086下列方程中有实数解的是()Ax4+16=0Bx2x+1=0CD7若a=,则实数a在数轴上对应的点的大致位置是()A点EB点FC点GD点H8下列因式分解正确的是ABCD9据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A204103 B20.4104 C2.04105 D2.0410610二次函数(2x1)22的顶点的坐标是()A(1,2)B(1,2)C(,2)D(,2)11小明在九年级进行的六次数
4、学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A91,88B85,88C85,85D85,84.512将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25x+4二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一元二次方程x24x30的两根为m,n,则mn= 14如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_15如图
5、,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30在图中画出弦AD,使AD=1,则CAD的度数为_16等腰梯形是_对称图形.17从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_18如图,在四边形ABCD中,AC、BD相交于点E,若,则_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在中,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.20(6分)如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),B(4,0),
6、与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使BMP与ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由21(6分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧求证:AB为C的切线求图中阴影部分的面积22(8分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且B=90,求:BAD的度数;四边形ABCD的面积(结果保留根号)23(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线AD
7、CB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)24(10分)某海域有A、B两个港口,B港口在A港口北偏西30方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75方向的C处,求:(1)C= ;(2)此时刻船与B港口之间的距离CB的长(结果保留根号)25(10分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O
8、的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数26(12分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12方向,B在地面C的北偏东57方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin330.54,cos330.84,tan330.65)27(12分)如图,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(3,0)两点,与y轴交于点D(0,3)(1)求这个抛物线的解析式;(2)如图,过点A的直线与抛物线交于点E,交y轴
9、于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与AOM相似?若存在,求出点P的坐标;若不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误
10、;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、A【解析】分析:A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,结论C错误;D、由x1x2=2,可得出x10,x20,结论D错误综上即可得出结论详解:A=(a)241(2)=a2+80,x1x2,结论A正确;B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值
11、不确定,B结论不一定正确;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误;D、x1x2=2,x10,x20,结论D错误故选A点睛:本题考查了根的判别式以及根与系数的关系,牢记“当0时,方程有两个不相等的实数根”是解题的关键3、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解详解:平均数=(129+136+140+145+146+148+154+158+165+175)10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从
12、小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位4、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小5、C【解析】【分析】科学记数法的表示形式为a1
13、0n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.51故选C.【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、C【解析】A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的
14、根【详解】A.中=024116=640,方程无实数根;B.中=(1)2411=30,方程无实数根;C.x=1是方程的根;D.当x=1时,分母x2-1=0,无实数根故选:C【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.7、C【解析】根据被开方数越大算术平方根越大,可得答案【详解】解:,34,a=,3a4,故选:C【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出34是解题关键8、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解
15、因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确故选:D【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键9、C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04105,故选C考点:科学记数法表示较大的数10、C【解析】试题分析:二次函数(21)2即的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系11、D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案众数出现次数最多的数,85出现了2次,次数最多,
16、所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)2=84.5,故选D考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题12、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】y=x2-x+1=x-122+34 ,当向左平移2个单位长度,再向上平移3个单位长度,得y=x-12+22+34+3=x+322+154=x2+3x+6.故选A【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;二、填空
17、题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=3,将所求式子利用完全平方公式变形后,即mn+=3mn=16+9=1故答案为1考点:根与系数的关系14、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1
18、,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合15、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1,AD=AD=1,AB=2,cosDAB=
19、cosDAB=,DAB=DAB=60,CAB=30,CAD=30,CAD=1CAD的度数为:30或1故答案为30或1【点睛】本题考查圆周角定理;含30度角的直角三角形16、轴【解析】根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线【详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【点睛】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形17、.【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既
20、是中心对称图形又是轴对称图形的概率为.【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.18、【解析】利用相似三角形的性质即可求解;【详解】解: ABCD,AEBCED, , ,故答案为 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论【详解】(1)理由如下,垂直平分,即.(2
21、)连接,设,由(1)得,又,解得,即【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键20、 (1)y=x2+x+2;(2)满足条件的点P的坐标为(,)或(,)或(,5)或(,5)【解析】(1)利用待定系数法求抛物线的表达式;(2)使BMP与ABD相似的有三种情况,分别求出这三个点的坐标.【详解】(1)抛物线与x轴交于点A(1,0),B(4,0),设抛物线的解析式为y=a(x+1)(x4),抛物线与y轴交于点C(0,2),a1(4)=2,a=,抛物线的解析式为y=(x+1)(x4)=x2+x+2;(2)如图1,连接CD,抛物线的解析式为y=x2+x+
22、2,抛物线的对称轴为直线x=,M(,0),点D与点C关于点M对称,且C(0,2),D(3,2),MA=MB,MC=MD,四边形ACBD是平行四边形,A(1,0),B(4,0),C(3,22),AB2=25,BD2=(41)2+22=5,AD2=(3+1)2+22=20,AD2+BD2=AB2,ABD是直角三角形,ADB=90,设点P(,m),MP=|m|,M(,0),B(4,0),BM=,BMP与ABD相似,当BMPADB时,m=,P(,)或(,),当BMPBDA时,m=5,P(,5)或(,5),即:满足条件的点P的坐标为P(,)或(,)或(,5)或(,5)【点睛】本题考查了二次函数的应用,解
23、题的关键是熟练的掌握二次函数的应用.21、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键22、(1);(2)【解析】(1)连接
24、AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出ACD的形状,进而可求出BAD的度数;(2)由(1)可知ABC和ADC是Rt,再根据S四边形ABCD=SABC+SADC即可得出结论【详解】解:(1)连接AC,如图所示:AB=BC=1,B=90AC=, 又AD=1,DC=, AD2AC2=3 CD2=()2=3即CD2=AD2+AC2DAC=90 AB=BC=1BAC=BCA=45BAD=135;(2)由(1)可知ABC和ADC是Rt,S四边形ABCD=SABC+SADC=11+1= .【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答
25、此题的关键23、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来
26、少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.24、(1)60;(2)【解析】(1)由平行线的性质以及方向角的定义得出FBA=EAB=30,FBC=75,那么ABC=45,又根据方向角的定义得出BAC=BAE+CAE=75,利用三角形内角和定理求出C=60;(2)作ADBC交BC于点D,解RtABD,得出BD=AD=30,解RtACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,EAB
27、=30,AEBF,FBA=30,又FBC=75,ABC=45,BAC=BAE+CAE=75,C=60故答案为60; (2)如图,作ADBC于D, 在RtABD中,ABD=45,AB=60,AD=BD=30 在RtACD中,C=60,AD=30,tanC=,CD=10, BC=BD+CD=30+10答:该船与B港口之间的距离CB的长为(30+10)海里 25、(1)详见解析;(2)CEF=45【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:
28、如图1中,连接OCOAOC,12,CD是O切线,OCCD,DCO90,3290,AB是直径,1B90,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,ECDB,CEFCFE,ECF90,CEFCFE4526、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键27、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得2分即
29、所求抛物线的解析式为:3分 【小题2】 如图,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HFHI设过A、E两点的一次函数解析式为:ykxb(k0),点E在抛物线上且点E的横坐标为-2,将x-2,代入抛物线,得点E坐标为(-2,3)4分又抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)抛物线的对称轴直线PQ为:直线x-1, 中国教#&育出%版网点D与点E关于PQ对称,GDGE 分别将点A(1,0)、点E(-2,3)代入ykxb,得:k+b=0,-2k+b=3解得:k=-1,b=1过A、E两点的一次函数解析式为:y-x1 当x0时,y1 点F坐标为(0,1)5分 |DF|=2又点F与点I关于x轴对称, 点I坐标为(0,-1) |EI|=(-2-0)2+3-(-1)2=22+42=25又要使四边形DFHG的周长最小,由于DF是一个定值,只要使DGGHHI最小即可 6分由图形的对称性和、,可知, DGGHHFEGGHHI只有当EI为一条直线时,EGGHHI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:y=k1x+b1(k10),分别将点E(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赔偿责任划分协议书
- 终止合作补偿协议书
- 租车换车协议书模板
- 架线用地协议书范本
- 离异小孩探视协议书
- 赠与款项协议书范本
- 租赁房屋转让协议书
- 绩效工资考核协议书
- 双方赔款协议书手写
- 林地农庄转让协议书
- 2025年中国电子信息产业集团有限公司招聘笔试参考题库含答案解析
- 市政工程道路专业监理实施细则
- 2025年《中央一号文件》参考试题库资料100题及答案(含单选、多选、判断题)
- 宜家员工手册
- 婴幼儿行为观察与分析郗倩讲解
- 2024年北京电子科技职业学院高职单招语文历年参考题库含答案解析
- 《性病防治知识讲座》课件
- 医疗设备科的管理制度
- DG-TJ 08-2048-2024 民用建筑电气防火设计标准
- 《客至》《宾至》课件高中语文选择性必修下册
- 2025年中智集团招聘笔试参考题库含答案解析
评论
0/150
提交评论