




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、GUIZHOU UNIVERSITY结课论文报告课程名称年级2011级专业统计111学生姓名学号 1107010270指导老师 戴老师理学院统计学中的几种统计推断方法数理统计的基本问题是根据样本所提供的信息,对总体的分布以及分布的数字特征 作出统计推断。统计推断的主要内容分为两大类:一是参数估计问题,另一类是假设检 验问题。本篇文章主要讨论总体参数的点估计、区间估计和假设检验。一、点估计1、矩估计首先讲“矩”的概念,定义:设X是随机变量,k是一正整数,若EXk存在,则称EXk为随机变量X的k阶原点矩,记为匕;若存在,则称它为X的k阶中心矩,记为气。显然,数学期望EX就是1阶原点矩,方差DX就是
2、2阶中心矩。简单的说就是用样本矩去估计相应的总体矩,用样本矩的连续函数去估计相应的总 体矩的连续函数。矩估计法的理论基础是大数定理。因为大数定理告诉我们样本矩依概 率收敛于总体的相应矩,样本矩的连续函数依概率收敛于相应总体矩的连续函数。我们通常样本的均值X去估计总体的均值EX :即总体为X时,我们从中取出n个样本X1,X2, X疽我们认为总体的均值就是X =1 1Lxi,(当然这只是对总体均值的一 =1种估计,当然会有误差)当EX 2存在的时候,我们通常用1 8x,2作为总体X的EX 2的估计 =1一般地,我们用1 x:作为总体X的EXk的估计,用18(X,-加作为总体的 n i=1n i=1
3、E(X - EX)k的估计。例:设总体X在a,b上服从均匀分布,参数a,b未知,X 1, X2, X是一个样本, 求a,b的矩估计量。解:由矩估计法知道:EX = ;由于 DX = EX2 - (EX)2,因U匕EX2 = DX + (EX)2 = (b;)2 + (a 了)2用矩估计法,也即用 X = 1 X.作为EX的估计, 用1 X.2作为EX 2的估计,n i=1n i=1为了计算方便,我们记A =1 X.,记 A =1 x. 2n i=1n i=1即有哮=A1,EX 2 = 51 + 51 = A1242a + b = 2 A1b-a =、.12(A -A2)21再联立解关于a,b的
4、方程组得a,b的矩估计量分别为a = A1 - J3(A2 - A,) = X -3 ( x厂 X)2i=1b = R + J3(A? - A) = X +! (X厂 X )2i=12、极大似然估计 对于连续型总体X,设它的密度函数为f 3;。近,6 ),其中6 ,6 , 6是需要 m12 m估计的未知参数。设X 1, X2, X是来自总体X的一个样本,则X 1, X2,Xn的联合密度函数为:f!f (x ;6 ,6 , 6 )i 12 mi=1对于给定的一组样本值X ,x , x,记联合密度12 nL = L(x ,x , x ;6 ,6 , 6 ) = Hf (x ;6 ,6 , 6 )1
5、2 n 12 mi 12 mi=1则称L为样本的似然函数若X为离散型总体,它的概率分布为:P X = x = p(x;6 ,6 , 6 )12 m对于给定的一组样本观测值X ,X , X,记联合密度 TOC o 1-5 h z 12 nL = L(x ,x , X ;0 ,0 , 0 ) =H p(x ;0 ,0 , 0 )12 n 12 mi 12 mi=1则称L为样本的似然函数-具体求法对于已经给定的样本观测值x ,x ,X来说,似然函数L是关于待估计的参数12 n0 ,0 , 0的函数,因此我们应该想办法通过似然函数L求出参数0 ,0 , 0值。12 m12 m这里我们求法的思想来源于多
6、元函数求极大值:也即,我们把L = L(x ,x , x ;0 ,0 , 0 )看作关于0 ,0 , 0的多元函数,我们要12 n 12 m12 m求得适当的0 ,0 , 0的值,使得L = L(X:X , x ;0 ,0 , 0 )取最大值。12 m12 n 12 m解释:实际上. L = L(x ,x , x ;0 ,0 , 0)表示随机变量X ,X , X取得样本值12 n 12 m12 nX ,X , X时的联合概率,我们在一次试验中事件(X ,X , X ) = (X ,X , X )已经发生,12 n12 n12 n我们就有理由认为,参数必须保证此时的概率最大,也即:参数(002;
7、0”)的值应该是使得L = L(x ,x , X ;0 ,0 , 0 )最大的点。12 n 12 m这样我们的方法就是多元函数求极大值的方法。极大似然估计的具体步骤为:求出似然函数L = L(x ,x , x ;0 ,0 , 0 );12 n 12 m计算关于(0 ,0 , 0 )的函数L = L(x;X , X ;0 ,0 , 0 )的极大值点,12 m12 n 12 m我们由微积分的知识知道,实际问题中的极大值点就是函数的驻点,也就是每个偏导数都为0的点,即&八矿01竺=0,80(一般称该方程组为似然方程组)2但是在实际计算中,由于l = L(x,x , x ;6 ,6 , 6 )都是乘积
8、,因此以上方程组求 TOC o 1-5 h z 12 n 12 m解不太容易,这时候我们由微积分的知识知道到函数L = L(x ,x , x ;6 ,6 , 6 )和它的12 n 12 m对数函数lnL = InL(x ,x, x ;6 ,6 , 6 )有相同的极大值点,因此匕我把问题转化为求 12 n 12 mlnL = InL(x ,x , x ;6 ,6 ; 6 )的极大值点,这样把乘积问题转化为了和差问题,在某 12 n 12 m些复杂问题中可以大大减轻计算!何ln L八=086 1公=0 86(一般称该方程组为对数似然方程组). 2 :辛=0、86 m求解这个方程组即得到上个步骤求出
9、的(6 ,6 , 6 )就是参数(6 ,6 , 6 )的估计值。12 m12 m二、区间估计由于总体的未知参数6的估计量6(XX2,X)是随机变量,无论这个估计量的性 质有多好,通过一个样本值(x, x所得到的估计值,只能是未知参数6的近似值, 而不是6的真值。并且样本值不同所得到的估计值也不同。那么6的真值在什么范围内 呢?能不能通过样本,寻找一个区间,以一定的把握包含总体未知参数6呢?这就是总 体未知参数的区间估计问题。区间估计严格的定义为:定义:设总体X的分布函数F(x,6 )含有一个未知参数6,对于给定值a (0 a 1),若 TOC o 1-5 h z 由样本(X ,X , X )确
10、定的两个的两个统计量6 (X ,X , X )和6(X ,X , X )满足 12 n112 n12 nP6 (X ,X , X ) 6 6 (X ,X , X) = 1 -a112n212n则称随机区间(61,62)是参数6的置信度为1-a的置信区间,60口62分别趁称为置信度为1 -a的双侧置信区间的置信下限和置信上限,1 -a称为置信度。单个正态总体的的数学期望和方差的区间估计是我们重点要求掌握的知识点,大家 可以好好阅读教材第189198面,实际上课本把这种区间估计分各种情形的结论总结 成了第209面的表格。大家在理解这些区间估计的实质后,应该把表格的结论和公式记 住,往往在实际解题的
11、时候我们只需要套用这些结论就可以了!三、假设检验所谓假设检验,顾名思义就是先假设再检验,实际上有点类似于反证法,在实际问 题中我们往往需要对未知总体提出某中假设或推断,但是我们的假设可能是错的,也可 能是正确的,这时候我们就需要利用一个抽样的样本(七,号 七),通过一定的方法,检 验这个假设是否合理,从而作出接受或者拒绝这个假设的结论。假设检验的基本原理是一一小概率事件原理,也即:我们认为小概率事件在一次试 验中几乎不可能发生,如果我们在抽取的样本观测值(七,七,七)下,居然使得小概率事 件发生了,我们就有理由否定原假设。在明确一个假设检验问题的性质与基本前提(包括分布类型是否已知,如果类型已 知,分布中包含哪些未知参数等等)之后,假设检验的一般步骤如下: 充分考虑和利用已知的背景知识提出原假设H0以及对立假设气; 给定样本,确定合适的检验统计量,并在H0为真下导出统计量的分布(要求此 分布不依赖与任何未知参数);确定拒绝域:即依直观分析先确定拒绝域的形式,然后根据给定的显著性水平a 和以上统计量的分布由条件概率尸拒绝H0I H0为真 =a确定拒绝域的临界值,从而确定 拒绝域;作出判断:由一次具体抽样的样本值计算统计量的值,若统计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西师范大学《中学体育教材教法》2023-2024学年第一学期期末试卷
- SCI论文写作与投稿 第2版-课件 7-SCI论文摘要写作
- 陕西理工大学《艺术素养拓展(美术一)》2023-2024学年第二学期期末试卷
- 陕西省商洛市第3中学2025届高中毕业班第二次模拟考试语文试题含解析
- 陕西省度西安中学2024-2025学年3月高三线上自我检测试题英语试题含解析
- 陕西省渭南市韩城市2024-2025学年高三下学期第二次月考试题生物试题含解析
- 陕西省西安交通大学附中2025届高中毕业班综合测试(二)历史试题含解析
- 陕西省西安市莲湖区七十中2025届高三下学期期中联考物理试题(创新班)试题含解析
- 扁腺双切护理
- 小学生舌尖上的浪费教育
- 2024年电力交易员(中级工)职业鉴定理论考试题库-上(单选题)
- 内蒙古赤峰市2025届高三下学期3·20模拟考试英语试卷(含答案)
- 门诊护士沟通培训课件
- 大学生实习证明模板(8篇)
- Unit 3 My hometown Grammar 课件 2024-2025学年译林版英语七年级下册
- 2025年辽宁医药职业学院单招职业技能考试题库附答案
- 2025年高中语文课内古诗文《蜀道难》《蜀相》联读教学设计
- 舞台剧联合投资协议书范本
- 北京市房山区2024-2025学年九年级上学期期末英语试题(含答案)
- DB34-T 4665-2024 高速公路建设项目决算文件编制规范
- 江苏教育报刊总社公开招聘4人高频重点提升(共500题)附带答案详解
评论
0/150
提交评论