安徽省宣城市宣州区水阳初级2022年中考联考数学试题含解析及点睛_第1页
安徽省宣城市宣州区水阳初级2022年中考联考数学试题含解析及点睛_第2页
安徽省宣城市宣州区水阳初级2022年中考联考数学试题含解析及点睛_第3页
安徽省宣城市宣州区水阳初级2022年中考联考数学试题含解析及点睛_第4页
安徽省宣城市宣州区水阳初级2022年中考联考数学试题含解析及点睛_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角

2、三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S9的值为( )A()6B()7C()6D()72如图,G,E分别是正方形ABCD的边AB,BC上的点,且AGCE,AEEF,AEEF,现有如下结论:BEDH;AGEECF;FCD45;GBEECH其中,正确的结论有( )A4 个B3 个C2 个D1 个3九章算术是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值

3、金 x 两,每只羊值金 y 两,则列方程组错误的是( )ABCD4二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个5已知反比例函数y=,当1x3时,y的取值范围是()A0y1B1y2C2y1D6y266的相反数为A-6B6CD7一元二次方程(x+2017)21的

4、解为( )A2016,2018B2016C2018D20178如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定9已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:abc0;2a+b0;b24ac0;ab+c0,其中正确的个数是()A1B2C3D410已知,下列说法中,不正确的是( )AB与方向相同CD11下列图形中是轴对称图形但不是中心对称图形的是()ABCD12如图,在ABC中,B90,AB3cm,BC6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动

5、,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,ABCD中,E是BA的中点,连接DE,将DAE沿DE折叠,使点A落在ABCD内部的点F处若CBF25,则FDA的度数为_14数学的美无处不在数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这

6、三个数的倒数发现:我们称15、12、10这三个数为一组调和数现有一组调和数:x,5,3(x5),则x的值是15因式分解:a2b2abb 16抛物线yx2+bx+c的部分图象如图所示,则关于x的一元二次方程x2+bx+c0的解为_17如果方程x2-4x+3=0的两个根分别是RtABC的两条边,ABC最小的角为A,那么tanA的值为18有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再

7、将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由20(6分)(1)计算:;(2)化简:21(6分) “足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图(说明:A级:8分10分,B级:7分7.9分,C级:6分6.9分,D级:1分5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆

8、心角是_度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22(8分)已知a2+2a=9,求的值23(8分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:24(10分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD25(10分)某学校要了解学生上

9、学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60,“自行车”对应的扇形圆心角为120,已知七年级乘公交车上学的人数为50人(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?26(12分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾

10、箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?27(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图和图,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为 ,图中的m的值为 ;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数参考答案一、选择题(本大题共12个

11、小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:如图所示正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2=CD2,DE=CE,S2+S2=S1观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,由此可得Sn=()n2当n=9时,S9=()92=()6,故选A考点:勾股定理2、C【解析】由BEG45知BEA45,结合AEF90得HEC45,据此知 HCEC,即可判断;求出GAE+AEG45,推出GAEFEC,根据 SAS 推出GAECEF,即可判断;求出AGEECF135,即可判断;求出FEC45,根据

12、相似三角形的判定得出GBE和ECH 不相似,即可判断【详解】解:四边形 ABCD 是正方形,ABBCCD,AGGE,BGBE,BEG45,BEA45,AEF90,HEC45, HCEC,CDCHBCCE,即 DHBE,故错误;BGBE,B90,BGEBEG45,AGE135,GAE+AEG45,AEEF,AEF90,BEG45,AEG+FEC45,GAEFEC,在GAE 和CEF 中,AG=CE,GAE=CEF,AE=EF,GAECEF(SAS),正确;AGEECF135,FCD1359045,正确;BGEBEG45,AEG+FEC45,FEC45,GBE 和ECH 不相似,错误; 故选:C【

13、点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大3、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的

14、关键是理解题意找到相等关系及等式的基本性质4、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,y随x增大而增大,当x1时,y随x增大而减小,可知若点A(3,y1)、点B(,y1)、点C(7,

15、y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线

16、与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点;=b14ac0时,抛物线与x轴没有交点5、D【解析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题【详解】解:反比例函数y=,在每个象限内,y随x的增大而增大,当1x3时,y的取值范围是6y1故选D【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答6、A【解析】根据相反数的定义进行求解.【详解】1的相反数为:1故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为

17、相反数.7、A【解析】利用直接开平方法解方程【详解】(x+2017)2=1x+2017=1,所以x1=-2018,x2=-1故选A【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程8、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键9、D【解析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对

18、所得结论进行判断【详解】抛物线对称轴是y轴的右侧,ab0,与y轴交于负半轴,c0,abc0,故正确;a0,x=1,b2a,2a+b0,故正确;抛物线与x轴有两个交点,b24ac0,故正确;当x=1时,y0,ab+c0,故正确故选D【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定10、A【解析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用【详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因

19、为,所以;故该选项说法正确,故选:A【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量零向量和任何向量平行11、C【解析】分析:根据轴对称图形与中心对称图形的概念求解详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误故选:C点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180

20、度后与原图重合12、C【解析】根据题意表示出PBQ的面积S与t的关系式,进而得出答案【详解】由题意可得:PB3t,BQ2t,则PBQ的面积SPBBQ(3t)2tt2+3t,故PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下故选C【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、50【解析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明BCGDAE,从而7=6=25,进而可求FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF, 1=2, 7=8,3=4.1+2=3+4,1=2

21、=3=4,CDAB,3=5,1=5,在BCG和DAE中1=5,C=A,BC=AD,BCGDAE,7=6=25,8=7=25,FDA=50.故答案为50.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明BCGDAE是解答本题的关键.14、1【解析】依据调和数的意义,有,解得x1.15、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b2abbb(a22a1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b2abbb(a22a1)=b216、x11,x21【解析】直接观察图象,抛物线与x轴交于1,对称轴是x1,所以根据抛物线的

22、对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程x2+bx+c0的解【详解】解:观察图象可知,抛物线yx2+bx+c与x轴的一个交点为(1,0),对称轴为x1,抛物线与x轴的另一交点坐标为(1,0),一元二次方程x2+bx+c0的解为x11,x21故本题答案为:x11,x21【点睛】本题考查了二次函数与一元二次方程的关系一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值17、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,当3是直角边时,ABC最小的角为A,tanA=;当3是斜边时,根据勾股定理,A的邻边=,tanA=;

23、所以tanA的值为或18、【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏用到的知识点为:概率=所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、ADE是等腰三角形;证明过程见解析.【解

24、析】试题分析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC先证明CD=DA=DB,得到DAC=DCA,由ACAC即可得到DAE=DEA由此即可判断DAE的形状由EFAB推出CEF=EAD,EFC=ADC=ADE,再根据AD=DE=EF即可证明试题解析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC理由:BCA是直角三角形,ACB=90,AD=DB,CD=DA=DB,DAC=DCA,ACAC,DAE=A,DEA=DCA,DAE=DEA,DA=DE,ADE是等腰三角形四边形DEFD是菱形,EF=DE=DA,EFDD,CEF=DAE,EFC=CDA,CDCD,ADE=ADC

25、=EFC,在ADE和EFC中,EAD=CEFAD=EFADE=EFC,ADEEFC考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质20、(1)4+;(2).【解析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题【详解】(1)=4+1+|12|=4+1+|1|=4+1+1=4+;(2) =【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法21、(1)117;(2)答案见图;(3)B;(4)30.【解析】(1)先根据B等级人数及其百分比求得总人数,总人数减去

26、其他等级人数求得C等级人数,继而用360乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得【详解】(1)总人数为1845%=40人,C等级人数为40(4+18+5)=13人,则C对应的扇形的圆心角是3601340=117,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B(4)估计足球运球测试成绩达到A级的学生有300440=30人【点睛】本题考查了条

27、形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键22、,【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值试题解析:= = =, a2+2a=9,(a+1)2=1原式=23、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于

28、基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形24、(1)见解析;(2) 【解析】(1)根据题意作出图形即可;(2)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90,A=90,ADP+APD=APD+BPD=90,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP

29、= BDPB=ABAP=6AP=4,AP=2;PD=2,BD=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD=2,PQ垂直平分DD,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键25、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比=,调查的样本容

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论