2022年山东省东平中考数学考试模拟冲刺卷含解析及点睛_第1页
2022年山东省东平中考数学考试模拟冲刺卷含解析及点睛_第2页
2022年山东省东平中考数学考试模拟冲刺卷含解析及点睛_第3页
2022年山东省东平中考数学考试模拟冲刺卷含解析及点睛_第4页
2022年山东省东平中考数学考试模拟冲刺卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A众数B平均数C中位数D方差2苹果的单

2、价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元3由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()ABCD4如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D455如图所示,在折纸活动中,小明制作了一张ABC纸片,点D,E分别在边AB,AC上,将ABC沿着DE折叠压平,A与A重合,若A=70,则1+2=()A70B110C130D1406如图,小巷左右两侧是竖直的墙,一架梯子斜靠在

3、左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A0.7米B1.5米C2.2米D2.4米7如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A8,9B8,8.5C16,8.5D16,10.58一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()ABCD9如图,A、B、C是O上的三点,B=75,则AOC的度数是(

4、 )A150B140C130D12010下列各式正确的是()A(2018)=2018B|2018|=2018C20180=0D20181=201811若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x21012y83010则抛物线的顶点坐标是()A(1,3)B(0,0)C(1,1)D(2,0)12如图1,等边ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形设点I为对称轴的交点,如图2,将这个图形的顶点A与等边DEF的顶点D重合,且ABDE,DE=2,将它沿等边DEF的边作无滑动

5、的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A18B27CD45二、填空题:(本大题共6个小题,每小题4分,共24分)13一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_米14标号分别为1,2,3,4,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是_15如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_16分解因式: _

6、.17如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结当时,我们称是的“双旋三角形”如果等边的边长为a,那么它的“双旋三角形”的面积是_(用含a的代数式表示)18某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图该年级共有700人,估计该年级足球测试成绩为D等的人数为_人三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做

7、了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是 ;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随

8、机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平20(6分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.21(6分)22(8分)已知:如图,在ABC中,AB13,AC8,cosBAC,BDAC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F(1)求EAD的余切值;(2)求的值23(8分)平面直角坐标系xOy(如图),抛物线y=x2+2mx+3m2(m0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂

9、线,垂足为点E,联结DC、BC(1)当点C(0,3)时,求这条抛物线的表达式和顶点坐标;求证:DCE=BCE;(2)当CB平分DCO时,求m的值24(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具不妨设该种品牌玩具的销售单价为x元(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元在(1)问条

10、件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?25(10分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长26(12分)先化简,再求值:(m+1),其中m的值从1,0,2中选取27(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运

11、核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】方差是反映一组数据的波动大小的一个量方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差故选D2、C【解析】用单价乘数量得出买

12、2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.3、A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形故选A4、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周

13、角定理,主要考查学生的推理能力5、D【解析】四边形ADAE的内角和为(4-2)180=360,而由折叠可知AED=AED,ADE=ADE,A=A,AED+AED+ADE+ADE=360-A-A=360-270=220,1+2=1802-(AED+AED+ADE+ADE)=1406、C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选C【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键

14、.7、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A【点睛】考查了中位数、众数的概念本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数8、C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:

15、画树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:故答案为C【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键9、A【解析】直接根据圆周角定理即可得出结论【详解】A、B、C是O上的三点,B=75,AOC=2B=150故选A10、A【解析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答【详解】选项A,(2018)=2018,故选项A正确;选项B,|2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,20181= ,故选项D错误故选

16、A【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.11、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标详解:当或时,当时, ,解得 ,二次函数解析式为,抛物线的顶点坐标为,故选C点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键12、B【解析】先判断出莱洛三角形等边DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.【详解】如图1中,等边DEF的边长为2,等边ABC的边长为3,S矩形AGHF=23=6,由题意知,AB

17、DE,AGAF,BAG=120,S扇形BAG=3,图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6+3)=27;故选B【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边DEF扫过的图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案【详解】如图所示:坡度i=1:0.75,AC:BC=1:0.75=4:3,设AC=4x,则BC=3x,AB=5x,AB=20m,5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m故答案

18、为:1【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用表示坡角,可知坡度与坡角的关系是14、奇数【解析】根据概率的意义,分n是偶数和奇数两种情况分析即可.【详解】若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,故答案为:奇数【点睛】本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.15、【解析】结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去

19、剩下的面积.【详解】解:原式= 故答案为:【点睛】此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.16、【解析】先提取公因式b,再利用完全平方公式进行二次分解解答:解:a1b-1ab+b,=b(a1-1a+1),(提取公因式)=b(a-1)1(完全平方公式)17、.【解析】首先根据等边三角形、“双旋三角形”的定义得出A BC是顶角为150的等腰三角形,其中AB=AC=a过C作CDAB于D,根据30角所对的直角边等于斜边的一半得出CDACa,然后根据SABCABCD即可求解【详解】等边ABC的边长为a,AB=AC=a,BAC=60将ABC的边AB绕着点A顺时针旋转(0

20、90)得到AB,AB=AB=a,BAB=边AC绕着点A逆时针旋转(090)得到AC,AC=AC=a,CAC=,BAC=BAB+BAC+CAC=+60+=60+90=150如图,过C作CDAB于D,则D=90,DAC=30,CDACa,SABCABCDaaa1故答案为:a1【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了含30角的直角三角形的性质,等边三角形的性质以及三角形的面积18、1【解析】试题解析:总人数为1428%=50(人),该年级足球测试成绩为D等的人数为(人)故答案为:1三、解答题:(本大题共9个小题,

21、共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)40;(2)144;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:36040%=144,故答案为144;(3)调查的结果为D等级的人数为:40040%=160,故补全的条形统计图如右图所示,(4)由题

22、意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30+|2-|+()-1-(3-)0-(-1)2018=3+2-+3-1-1,=+2+3-1-1,=3;(2)(x

23、),=,=x-y,当x=,y=-1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法21、2x2【解析】分别解不等式,进而得出不等式组的解集【详解】解得:x2解得:x2故不等式组的解集为:2x2【点睛】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键22、(1)EAD的余切值为;(2)=.【解析】(1)在RtADB中,根据AB=13,cosBAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求EAD的余切即可;(2)过D作DGAF交BC于G,由平行线分

24、线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EFDG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)BDAC,ADE=90,RtADB中,AB=13,cosBAC=,AD=5, 由勾股定理得:BD=12,E是BD的中点, ED=6, EAD的余切=;(2)过D作DGAF交BC于G,AC=8,AD=5, CD=3,DGAF, =,设CD=3x,AD=5x,EFDG,BE=ED, BF=FG=5x,=.【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关

25、键是熟练掌握平行线分线段成比例定理.23、(1)y=x2+2x+3;D(1,4);(2)证明见解析;(3)m=;【解析】(1)把C点坐标代入y=x2+2mx+3m2可求出m的值,从而得到抛物线解析式,然后把一般式配成顶点式得到D点坐标;如图1,先解方程x2+2x+3=0得B(3,0),则可判断OCB为等腰直角三角形得到OBC=45,再证明CDE为等腰直角三角形得到DCE=45,从而得到DCE=BCE;(2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程x2+2mx+3m2=0得B(3m,0),同时

26、确定C(0,3m2),再利用相似比表示出GF=2m2,则DG=2m2,接着证明DCG=DGC得到DC=DG,所以m2+(4m23m2)2=4m4,然后解方程可求出m【详解】(1)把C(0,3)代入y=x2+2mx+3m2得3m2=3,解得m1=1,m2=1(舍去),抛物线解析式为y=x2+2x+3; 顶点D为(1,4); 证明:如图1,当y=0时,x2+2x+3=0,解得x1=1,x2=3,则B(3,0),OC=OB,OCB为等腰直角三角形,OBC=45,CE直线x=1,BCE=45,DE=1,CE=1,CDE为等腰直角三角形,DCE=45,DCE=BCE;(2)解:抛物线的对称轴交x轴于F点

27、,交直线BC于G点,如图2, 抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),当y=0时,x2+2mx+3m2=0,解得x1=m,x2=3m,则B(3m,0),当x=0时,y=x2+2mx+3m2=3m2,则C(0,3m2),GFOC,即 解得GF=2m2,DG=4m22m2=2m2,CB平分DCO,DCB=OCB,OCB=DGC,DCG=DGC,DC=DG,即m2+(4m23m2)2=4m4, 而m0, 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理

28、解坐标与图形性质,记住两点间的距离公式24、 (1) 1000 x,10 x2+1300 x1;(2)50元或80元;(3)8640元.【解析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600(x40)x=1000 x,销售利润w=(1000 x)(x30)=10 x2+1300 x1(2)令10 x2+1300 x1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=10 x2+1300 x1转化成y=10(x65)2+12250,结合x的取值范围,求出最大利润【详解】解:(1)销售量y=600(x40)x=1000 x,销售利润w=(1000 x)(x30)=10 x2+1300 x1故答案为: 1000 x,10 x2+1300 x1(2)10 x2+1300 x1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润(3)根据题意得,解得:44x46 w=10 x2+1300 x1=10(x65)2+12250a=100,对称轴x=65,当44x46时,y随x增大而增大当x=46时,W最大值=8640(元)答:商场销售该品牌玩具获得的最大利润为8640元25、(1)25;(2)CD1,CD27【解析】分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论