




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、STC15F2K60S2单片机的基本结构和系统的典型构成本章学习目标掌握STC15F2K60S2单片机的基本结构掌握单片机I/O口的使用掌握单片机应用系统的典型构成2一、单片机的内部结构 单片微型计算机(简称单片机)在一片芯片上集成了前述微型计算机的功能结构,有些单片机不仅集成了CPU、存储程序和数据的存储器、I/O接口、定时/计数器等常规资源,而且还集成了工业测控系统中常用的模拟量模块。 3.1 STC15F2K60S2单片机的基本结构3单片机产品8051内核是Intel 8051系列单片机的基本标准,许多参考书上将这种单片机称为MCS-51系列单片机。MCS-51系列单片机的典型产品为80
2、51,它有4K8ROM,128字节RAM,2个16位定时/计数器,4个8位I/O口,一个串行口。二十世纪80年代,Intel将8051内核转让或出售给几家著名的IC厂商,如Philips,Atmel等。这样,8051单片机就变成众多制造厂家支持的,发展成为上百个产品的大家族。最常用的宏晶STC系列单片机,Atmel公司的AT89系列等51系列,等等。只要是8051内核的单片机,它们的最基本结构是相同的,并且,指令系统完全兼容标准8051单片机。4 以目前市场上常见的8051内核单片机STC15F2K60S2为例,说明单片机的内部结构。STC12C5A60S2单片机主要集成了以下资源:增强型80
3、51内核,单时钟机器周期,速度比传统8051内核单片机快812倍60KB Flash程序存储器;1KB数据Flash;2048字节的SRAM3个16位可自动重装载的定时/计数器(T0、T1、T2)可编程时钟输出功能 至多42根I/O口线 2个全双工异步串行口(UART)1个高速同步通信端口(SPI) 8通道10位ADC3通道PWM/可编程计数器阵列/捕获/比较单元内部高可靠上电复位电路和硬件看门狗 内部集成高精度R/C时钟,常温工作时,可以省去外部晶振电路。5图3- 7 STC15F2K60S2单片机的内部结构图STC15F2K60S2单片机内部结构框图6STC15F2K60S2单片机的内部资
4、源中央处理器(CPU) 程序存储器(Flash)数据存储器(RAM)数据Flash存储器定时/计数器I/O接口通用异步串行通信接口(UART)中断系统SPI接口高速A/D转换模块PWM(或捕获/比较单元)看门狗电路电源监控片内RC振荡器等模块几乎包含了数据采集和控制中所需的所有单元模块, 可称得上一个片上系统(SOC)71、CPU结构 单片机的中央处理器(CPU)由运算器和控制器组成。(1)运算器 以8位算术/逻辑运算部件ALU为核心,加上通过内部总线而挂在其周围的暂存器TMP1、TMP2、累加器ACC、寄存器B、程序状态标志寄存器PSW以及布尔处理机组成了整个运算器的逻辑电路。8算术逻辑单元
5、ALU:用来完成二进制数的四则运算和布尔代数的逻辑运算。累加器ACC又记作A:是一个具有特殊用途的8位寄存器,在CPU中工作最频繁,用来存放操作数和运算结果。寄存器B:是专门为乘、除法设置的寄存器,也是一个8位寄存器,用来存放乘法和除法中的操作数及运算结果,对于其他指令,它只作暂存器用。程序状态字(PSW):又称为标志寄存器,一个8位寄存器,用来存放执行指令后的有关状态信息,供程序查询和判别之用。 9PSW中有些位的状态是在指令执行过程中自动形成的,有些位可以由用户采用指令加以改变。PSW的各位定义如下所示:位号D7D6D5D4D3D2D1D0符号CYACF0RS1RS0OVF1P10CY()
6、:进位标志位 当执行加/减法指令时,如果操作结果的最高位D7出现进/借位,则CY置“1”,否则清“0”。执行乘除运算后,CY清零。此外,CPU在进行移位操作时也会影响这个标志位。位号D7D6D5D4D3D2D1D0符号CYACF0RS1RS0OVF1P11AC():辅助进位标志位 当执行加/减法指令时,如果低四位数向高四位数产生进/借位,则AC置“1”,否则清零。位号D7D6D5D4D3D2D1D0符号CYACF0RS1RS0OVF1P12F0():用户标志0。 该位是由用户定义的一个状态标志。可以用软件来使它置“1”或清“0”,也可以由软件测试F0控制程序的流向。F1():用户标志1。 该位
7、是由用户定义的一个状态标志。与F0类似,可以用软件来使它置“1”或清“0”,也可以由软件测试F1控制程序的流向。位号D7D6D5D4D3D2D1D0符号CYACF0RS1RS0OVF1P13RS1,RS0():工作寄存器组选择控制位,其详细介绍见后续内容。OV():溢出标志位。指示运算过程中是否发生了溢出,在执行指令过程中自动形成。位号D7D6D5D4D3D2D1D0符号CYACF0RS1RS0OVF1P14P():奇偶标志位 累加器ACC中1的个数为偶数,P=0;否则P=1。每个指令周期都由硬件来置“1”或清“0”。在具有奇偶校验的串行数据通信中,可以根据P设置奇偶校验位。位号D7D6D5D
8、4D3D2D1D0符号CYACF0RS1RS0OVF1P15布尔处理机是单片机CPU中运算器的一个重要组成部分。功能:为用户提供丰富的位操作功能,有相应的指令系统,硬件有自己的“累加器”(进位位C,即CY),和自己的位寻址RAM和I/O空间,是一个独立的位处理机。 大部分位操作均围绕着其累加器进位位C完成。对 任何可直接寻址的位,布尔处理机可执行置位、取反、转移、位的读写等操作。在任何可寻址的位(或该位内容取反)和进位标志C之间,可执行逻辑与、或操作,其结果送回到进位标志C。16(2)控制器 控制器是CPU的大脑中枢,包括定时控制逻辑、指令寄存器、译码器、地址指针DPTR及程序计数器PC、堆栈
9、指针SP、RAM地址寄存器、16位地址缓冲器等。17程序计数器PC是一个16位的程序地址寄存器,专门用来存放下一条需要执行的指令的内存地址,能自动加1。当CPU执行指令时,根据程序计数器PC中的地址从存储器中取出当前需要执行的指令码,并把它送给控制器分析执行,随后程序计数器中的地址自动加1,以便为CPU取下一个需要执行的指令码做准备。当下一个指令码取出执行后,PC又自动加1。这样,程序计数器PC一次次加1,指令就被一条条执行。18堆栈主要用于保存临时数据、局部变量、中断或子程序的返回地址。STC15F2K60S2单片机的堆栈设在内部RAM中,是一个按照“先进后出”规律存放数据的区域。堆栈指针S
10、P是一个8位寄存器,能自动加1或减1。当数据压入堆栈时,SP自动加1;数据从堆栈中弹出后,SP自动减1。 复位后,寄存器默认值为07H,堆栈区在08H开始的区域。用户通常将堆栈区域用指令设置在内部RAM的80HFFH之间。19数据指针DPTR一个16位专用寄存器,由DPL(低8位)和DPH(高8位)组成。DPTR可以直接进行16位操作,也可分别对DPL和DPH按字节进行操作。STC15F2K60S2单片机有两个16位的数据指针DPRT0和DPTR1,这两个数据指针共用同一个地址,可通过设置辅助寄存器AUXR1中的DPS()位来选择具体使用哪一个数据指针。 202、存储器的结构STC15F2K6
11、0S2 结构特点:程序存储器和数据存储器的寻址空间是分开的。结构划分:片内集成有4个物理上相互独立的存储器空间:程序Flash存储器、数据Flash存储器(EEPROM)、内部数据存储器和外部数据存储器。21图3-8 STC15F2K60S2单片机存储器配置示意图22(1)程序Flash存储器功能:存放用户程序、数据和表格等信息。空间大小:STC15F2K60S2片内集成了60KB的程序Flash存储器,地址为0000HF000H。单片机复位后,程序计数器PC的内容为0000H,从0000H单元开始执行程序。 23特殊单元在程序Flash存储器中有些特殊的单元,这些单元是中断服务程序的入口地址
12、:0003H 外部中断0中断服务程序的入口地址000BH 定时/计数器0中断服务程序的入口地址0013H 外部中断1中断服务程序的入口地址001BH 定时/计数器1中断服务程序的入口地址0023H 串行通信口1中断服务程序的入口地址002BH ADC中断服务程序的入口地址0033H 低电压检测中断服务程序的入口地址003BH PCA中断服务程序的入口地址0043H 串行通信口2中断服务程序的入口地址004BH SPI中断服务程序的入口地址24中断服务程序的入口地址0053H 外部中断2中断服务程序的入口地址005BH 外部中断3中断服务程序的入口地址0063H 定时/计数器2中断服务程序的入口
13、地址0083H 外部中断4中断服务程序的入口地址响应中断时,单片机自动转到相应的中断入口地址去执行程序。由于大部分相邻中断入口地址之间只有8个地址单元,无法保存完整的中断服务程序,一般在中断入口的地址区存放一条无条件转移指令,指向真正存放中断服务程序的空间。中断响应后,CPU执行这条转移指令,转去执行中断服务程序。25使用指令 读取程序存储器中保存的表格常数等内容时,使用MOVC指令。 程序Flash存储器的擦写次数为10万次以上,大大提高了芯片利用率,降低了开发成本。26(2)数据存储器STC15F2K60S2 数据存储器也称为随机存取数据存储器。空间划分 在物理上和逻辑上都分为两个地址空间
14、:内部数据存储区和扩展数据存储区 。271)内部数据存储区(又称为内部RAM) 256字节内部RAM,存放中间结果和过程数据。内部RAM的地址范围是00HFFH,共256个单元,分三部分:低128字节RAM(00H7FH):也称为基本RAM区。基本RAM区又分为工作寄存器区、位寻址区、用户RAM和堆栈区。可以直接寻址和间接寻址。用“MOV”和“MOV Ri”形式的指令访问。高128字节RAM(80HFFH):只能间接寻址。用“MOV Ri”形式的指令访问。特殊功能寄存器(SFR)区:地址范围为80HFFH,只可直接寻址,用“MOV”形式的指令访问。28图3-9 内部数据存储器地址空间工作寄存器
15、区位寻址区通用用户RAM和堆栈区特殊功能寄存器区内部数据存储器地址空间分配29工作寄存器区地址分配:00H1FH共32个单元。分为四组(每一组称为一个寄存器组),每一组包括8个8位的工作寄存器,分别是R0R7。功能:通过使用工作寄存器,可以提高运算速度,也可以使用其中的R0或R1存放八位地址值,访问一个256字节外部RAM块中的单元。另外,R0R7也可以用作计数器,在指令作用下加1或减1。30工作寄存器组的选择:PSW寄存器中的RS1和RS0两位组合决定当前使用的工作寄存器组。可以通过位操作指令直接修改 RS1和RS0的内容,选择不同的工作寄存器组。RS1(PSW.4)RS0(PSW.3)工作
16、寄存器组工作寄存器地址000R7R0对应的地址为07H00H011R7R0对应的地址为0FH08H102R7R0对应的地址为17H10H113R7R0对应的地址为1FH18H表3-1 工作寄存器组选择31位寻址区20H2FH之间的单元既可以按字节存取,也可以按位存取共128位,地址范围是00H7FH。图3-10 内部RAM中的位地址32除了20H2FH之间的单元可以位寻址外,特殊功能寄存器中,直接地址可被8整除的寄存器(除了、和以外)也可以进行位寻址。图3-11 特殊功能寄存器中的位地址33用户RAM和堆栈区内部RAM中的30H7FH单元是用户RAM和堆栈区。一个8位的堆栈指针SP,并且堆栈区
17、只能设置在内部数据存储区。当有子程序调用和中断请求时,返回地址等信息被自动保存在堆栈内。STC15F2K60S2单片机复位后,SP为07H,使堆栈事实上由08H单元开始,考虑08H1FH单元分别属于工作寄存器组13,若在程序设计中用到这些工作寄存器,则在用户初始化程序中,最好把SP的值改变为80H或更大的值。STC15F2K60S2单片机的堆栈是朝着地址增大的方向生成的,即将数据压入堆栈后,SP的值增大。 34高128字节RAM和特殊功能寄存器对于STC15F2K60S2单片机,80HFFH既为高128字节RAM区的地址范围,又为特殊功能寄存器区(SFR)的地址范围,地址空间重叠,但物理上是独
18、立的。使用时,通过不同的寻址方式加以区分:高128字节的RAM区使用间接寻址访问,特殊功能寄存器使用直接寻址访问。由于堆栈操作也是间接寻址方式,所以,高 128 位数据 RAM 亦可作为堆栈区使用。35除了程序计数器PC和4个工作寄存器组外,其余的寄存器都在SFR区中。特殊功能寄存器大体分为两类 一类与芯片的引脚有关。如P0P5,它们实际上是6个锁存器,每个锁存器附加上相应的输出驱动器和输入缓冲器就构成了一个并行口。 另一类为芯片内部功能的控制或者内部寄存器。如中断屏蔽及优先级控制、定时器、串行口、SPI接口等。STC15F2K60S2单片机的特殊功能寄存器及其复位值如表3-2所列。362)扩
19、展数据存储区 外部数据存储区也称为扩展RAM区(简称,XRAM)。片内集成了1792字节的外部RAM,地址范围为0000H06FFH,可用于存放数据。注意,这里的“内部”和“外部”是逻辑上的概念,不是指芯片内部和外部。在汇编语言中,XRAM使用“MOVX DPTR” 或者“MOVX Ri”指令访问。在C语言中,可使用xdata声明存储类型即可。 如:unsigned char xdata i= 0;37访问片内集成的外部RAM时,不影响P0口、P2口、和ALE。STC15F2K60S2单片机还可以访问片外扩展的64KB外部数据存储器。STC15F2K60S2单片机的外部扩展I/O端口与扩展数据
20、存储器统一编址,因此外部I/O端口的地址占用扩展数据存储器的地址单元,用MOVX指令访问。38单片机内部扩展RAM是否可以访问受辅助寄存器AUXR(地址为8EH,复位值为01H)中的EXTRAM位控制。EXTRAM:0:内部扩展RAM可以存取;地址小于700H时,访问内部扩展RAM;地址大于或等于700H时,则访问单片机外部扩展的RAM或I/O空间。1:禁止访问内部扩展RAM。位号D7D6D5D4D3D2D1D0位名称T0 x12T1x12UART_M0 x6T2RT2_C/ T2x12EXTRAMS1ST239(3)数据Flash存储器空间大小:集成了1K字节的数据Flash存储器,与程序空
21、间是分开的地址范围:0000H03FFH。这1K字节的数据Flash存储器分为2个扇区,每个扇区包含512字节,对应的地址范围分别为:第一扇区:0000H01FFH 第二扇区:0200H03FFH40使用方法:建议同一次修改的数据放在同一个扇区,不是同一次修改的数据放在不同的扇区,不一定用满。数据Flash存储器的擦除操作是按扇区进行的。 数据Flash存储器可以作为EEPROM使用,擦写次数在10万次以上,用于保存一些需要在应用过程中修改并且掉电不丢失的参数数据。在用户程中,可以对数据Flash区进行字节读/字节编程/扇区擦除操作。41二、单片机的引脚及功能1、STC15F2K60S2单片机
22、的引脚封装LQFP-44封装图3-12 STC15F2K60S2单片机的引脚图42 DIP-40封装 图3-12 STC15F2K60S2单片机的引脚图43STC15F2K60S2单片机的逻辑符号图 图3-13 STC15F2K60S2单片机的逻辑符号图44DIP-40封装的STC15F2K60S2单片机和LQFP-44封装相比,除了没有、引脚外,其他资源和的单片机完全相同。 由于DIP封装的单片机焊接比较容易,因此,对于初学者,最好选用DIP封装的单片机进行学习。注意:在实际应用中,设计单片机应用系统的原理图时,一般应使用逻辑符号图,以便进行电路分析,而设计应用系统的印刷电路板图时,必须使用
23、单片机的引脚图。45引脚电源引脚外接晶体引脚控制和复位引脚输入/输出(I/O)引脚46(1)电源引脚Vcc:一般接电源的5V。具体的电压幅度应参考单片机的手册。GND:接电源地。47(2)外接晶体引脚XTAL1和XATL2芯片内部一个反相放大器的输入端和输出端。通常用于连接晶体振荡器。常见的连接方法如图所示。图3-14 常见的晶振连接方法48晶体振荡器M的频率可以在4MHz48MHz之间选择,典型值是(因为设计单片机通信应用系统时,使用这个频率的晶振可以准确地得到9600bits/s和19200bits/s的波特率)。电容C1、C2对时钟频率有微调作用,可在5100pF之间选择,典型值是47p
24、F。49STC15F2K60S2单片机内部集成高精度R/C时钟,工作时钟可以使用内部振荡器或者外部晶体振荡器(简称晶振)产生的时钟。 40引脚和44引脚封装的STC15F2K60S2单片机出厂标准配置是使用外部时钟。内部集成的高精度R/C时钟工业环境下的温漂为1%,常温下温飘5,频率范围为5MHz35MHz,可以在编程时设置。对于时钟频率要求不太敏感的场合,内部R/C振荡器完全能够满足要求。 使用内部R/C振荡器时钟时,XTAL1和XTAL2引脚悬空。 50使用外部晶振时,常见的连接方法与图3-14所示的连接方法相同。利用在系统编程(In-System Programming,ISP)工具对S
25、TC12C5A60S2单片机下载用户程序时,可以在选项中设置选择使用外部晶体振荡器时钟或者使用内部R/C振荡器时钟。51(3)控制和复位引脚ALE(与复用) 功能:当访问外部存储器或者外部扩展的并行I/O口时,ALE(允许地址锁存)的输出用于锁存地址的低位字节。标准8051单片机的ALE 脚对系统时钟进行6分频输出,可对外提供时钟。52当8051单片机时钟频率较高时,ALE脚是一个干扰源。STC15F2K60S2单片机直接禁止ALE脚对系统时钟进行6分频输出,彻底清除此干扰源,有利于系统的抗干扰设计。如果设计中需要单片机输出时钟,可以利用STC15F2K60S2单片机的可编程时钟输出脚对外输出
26、时钟。STC15F2K60S2单片机的ALE引脚在用MOVX指令访问片外扩展器件时输出地址锁存信号。53RST(与复用) 当振荡器运行时,在此引脚上出现两个机器周期的高电平将使单片机复位。如果需要单片机接上电源就可以复位,则需要使用上电复位电路。图3-15 上电复位电路图54脚出厂时默认为I/O口,可以通过 STC-ISP编程软件下载程序时,将其设置为RST复位脚。STC15F2K60S2单片机内部集成了MAX810专用复位电路,时钟频率在12MHZ以下时,复位脚可接1K电阻再接地,也可以使用图3-15所示的传统复位电路。55(4)输入/输出(I/O)引脚STC12C5A60S2单片机最多可以
27、有44根I/O口线,44根I/O口线分别为:P0口(8根):P1口(8根):P2口(8根):P3口(8根):P4口(8根):P5口(2根):、。 561)I/O口的工作模式4种工作模式:准双向口/弱上拉,推挽/强上拉,输入/高阻和开漏模式。复位后为准双向口/弱上拉工作模式。每个口的工作模式由2个控制寄存器中的相应位控制(PnM0和PnM1,n=0、1、2、3、4、5)。57例如,P0M0和P0M1用于设定P0口的工作模式,其中和用于设置的工作模式,和用于设置的工作模式,以此类推。PnM17:0PnM07:0I/O口模式00准双向口(传统8051单片机I/O口模式),灌电流可达20mA,拉电流为
28、270A,由于制造误差,实际为270uA150uA01推挽输入输出(强上拉输出,可达20mA,要加限流电阻,尽量少用)10仅为输入(高阻)11开漏(Open Drain),内部上拉电阻断开,要外加上拉电阻表3-5 I/O口工作模式设置58例如,若设置为开漏模式,为强推挽输入输出模式,为高阻输入模式,、和为弱上拉模式,则可以使用下面的代码进行设置: MOV P1M1,#10100000B MOV P1M0,#11000000B59STC15F2K60S2单片机的每个I/O口在弱上拉时都能承受20mA的灌电流(最好还是使用限流电阻,如1K)在强推挽输出时都能输出20mA的拉电流(也要加限流电阻)。
29、整个芯片的工作电流推荐不要超过90mA。即从MCU-Vcc流入的电流不超过90mA,从MCU-GND流出的电流不超过90mA,整体流入/流出电流都不能超过90mA。602)I/O口的复用功能P0口用作数据总线(D7D0)或者地址总线低8位(A7A0)。用作普通I/O。P1口用作普通I/O。复用为ADC转换输入、捕获/比较/脉宽调制、SPI通信线、第二串口或者第二时钟输出,如表所示。61表3-6 P1口的复用功能引脚复用功能P1.0ADC0/CCP1(捕获/比较/脉宽调制通道1)/RxD2(串口2输入)P1.1ADC1/CCP0(捕获/比较/脉宽调制通道0)/TxD2(串口2输出)P1.2ADC
30、2/ECI(可编程计数器阵列定时器的外部时钟输入)/SS(SPI从器件选择)P1.3ADC3/ MOSI(SPI主机输出从机输入)P1.4ADC4/ MISO(SPI主机输入从机输出)P1.5ADC5/ SCLK(SPI时钟)P1.6ADC6/ XTAL2(外接晶体引脚)/RxD_3(串口1输入备用切换引脚)P1.7ADC7/ XTAL1(外接晶体引脚)/TxD_3(串口1输出备用切换引脚)62P2口用作地址总线的高8位输出。用作通用I/O口使用。用于SPI和捕获/比较/脉宽调制的备用切换端口 引脚复用功能P2.0A8/RSTOUT_LOW(复位后输出低电平引脚)P2.1A9/ SCLK_2(
31、SPI时钟备用切换引脚)P2.2A10/ MISO_2(SPI主机输入从机输出备用切换引脚)P2.3A11/ MOSI_2(SPI主机输出从机输入备用切换引脚)P2.4A12/ /ECI_3(可编程计数器阵列定时器的外部时钟输入备用切换引脚)/SS_2(SPI从器件选择备用切换引脚)P2.5A13/CCP0_3(捕获/比较/脉宽调制通道0备用切换引脚)P2.6A14/ CCP1_3(捕获/比较/脉宽调制通道1备用切换引脚)P2.7A15/ CCP2_3(捕获/比较/脉宽调制通道2备用切换引脚)表3-7 P2口的复用功能63P3口用作通用I/O口使用。可复用为外部中断输入、计数器输入、时钟输出、
32、第一串口和外部总线的读/写控制,如表所示。64表3-8 P3口的复用功能端口引脚复用功能P3.0RXD(串口1输入)/ /INT4 (外部中断4,只能下降沿中断)/T2CLKO(T2的时钟输出)P3.1TXD(串口1输出)/T2CLKO(T2的外部输入)P3.2/INT0(外部中断0输入,既可上升沿中断也可下降沿中断)P3.3/INT1(外部中断1输入,既可上升沿中断也可下降沿中断)P3.4T0(定时器0外部输入)/ T1CLKOU(T1时钟输出)/ECI_2(可编程计数器阵列定时器的外部时钟输入备用切换引脚)P3.5T1(定时器1外部输入)/ T0CLKOU(T0时钟输出)/ CCP0_32
33、(捕获/比较/脉宽调制通道0备用切换引脚)P3.6/INT2(外部中断2输入,只能下降沿中断)/RxD_2(串口1输入备用切换引脚)/ CCP1_2(捕获/比较/脉宽调制通道1备用切换引脚)P3.7/INT3(外部中断3输入,只能下降沿中断)/TxD_2(串口1输出备用切换引脚)/ CCP2(捕获/比较/脉宽调制通道2)/ CCP2_2(捕获/比较/脉宽调制通道2备用切换引脚)65P4口作通用I/O口使用。某些口线具有复用功能,可配置为SPI通信线、捕捉/比较/脉宽调制、第二串口线等。表3-9 P4口的复用功能端口引脚复用功能P4.0MOSI_3(SPI主输出从输入备用切换引脚)P4.1MIS
34、O_3(SPI主输入从输出备用切换引脚)P4.2 (外部总线写控制信号)P4.3SCLK_3(SPI时钟备用切换引脚)P4.4 (外部总线读控制信号)P4.5ALE(地址锁存控制信号,主要用于外部总线扩展) P4.6RxD2_2(第二串口输入备用切换引脚)P4.7TxD2_2(第二串口输出备用切换引脚)66P5口(复位脚)/MCLKO(内部R/C振荡时钟输出;输出的频率可为MCLK/1或MCLK/2)/SS_3(SPI接口的从机选择信号备用切换引脚)。该引脚默认为I/O口,可以通过ISP编程将其设置为RST(复位)引脚。没有复用功能。67捕获/比较/脉宽调制(CCP)通道的引脚切换、SPI接口
35、的引脚切换以及串口的引脚切换由辅助寄存器AUXR1(也称为P_SW1,地址为A2H,复位值为0000 0000B)和外设功能切换寄存器P_SW2(地址为BAH,复位值为xxxx xxx0B)确定。 位号寄存器名称D7D6D5D4D3D2D1D0AUXR1S1_S1S1_S0CCP_S1CCP_S0SPI_S1SPI_S00DPSP_SW2S2_S68捕获/比较/脉宽调制(CCP)通道可以在三个地方切换,由CCP_S1和CCP_S0两个控制位选择,其选择方法如表3-10所示。CCP_S1CCP_S0切换引脚00CCP在P1.2/ECI,P1.1/CCP0,P1.0/CCP1,P3.7/CCP20
36、1CCP在P3.4/ECI_2,P3.5/CCP0_2,P3.6/CCP1_2,P3.7/CCP2_210CCP在P2.4/ECI_3,P2.5/CCP0_3,P2.6/CCP1_3,P2.7/CCP2_311无效表3-10 捕获/比较/脉宽调制(CCP)通道的切换69SPI可以在三个地方切换,由SPI_S1和SPI_S0两个控制位选择,其选择方法如表3-11所示。SPI_S1SPI_S0切换引脚00SPI在P1.2/SS,P1.3/MOSI,P1.4/MISO,P1.5/SCLK01SPI在P2.4/SS_2,P2.3/MOSI_2,P2.2/MISO_2,P2.1/SCLK_210SPI在
37、P5.4/SS_3,P4.0/MOSI_3,P4.1/MISO_3,P4.3/SCLK_311无效表3-11 SPI的引脚切换70串口1可以在三个地方切换,由S1_S1和S1_S0两个控制位选择,其选择方法如表3-12示。S1_S1S1_S0切换引脚00串口1在P3.0/RxD,P3.1/TxD01串口1在P3.6/RxD_2/XTAL2,P3.7/TxD_2/XTAL1,串口1在P1口时要使用内部时钟10串口1在P1.6/RxD_3,P1.7/TxD_3 ,串口1在P1口时要使用内部时钟11无效表3-12 串口1的引脚切换71串口2可以在两个地方切换,由S2_S0控制位选择:0:串口2在,P
38、1.1/TxD21:串口2在,P4.7/TxD2_2GF2:通用标志位。该位是由用户定义的一个状态标志。可以用软件来使它置“1”或清“0”,也可以由软件测试GF2控制程序的流向。ADRJ:留作备用。DPS:数据指针选择位。0:使用缺省数据指针DPTR0;1:使用另一个数据指针DPTR1。723)STC15F2K60S2单片机I/O口的结构准双向口工作模式的结构图3-16 准双向口工作模式的I/O位结构73I/O口可用作输出和输入功能而不需重新配置口线输出状态。当口线输出为“1”时I/O口驱动能力很弱,允许外部装置将其拉低。当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。每个端口都包含一
39、个锁存器,即特殊功能寄存器P0P5。这种结构在数据输出时,具有锁存功能,即在重新输出新的数据之前,口线上的数据一直保持不变。但对输入信号是不锁存的,所以外设输入的数据必须保持到取数指令执行为止。74为了便于叙述,以后将6个端口及其锁存器都表示为P0P5。准双向口有3个上拉场效应管T1、T2、T3,以适应不同的需要。其中,T1称为强上拉,上拉能力可达20mA;T2称为极弱上拉,上拉能力一般为30A;T3称为弱上拉,一般上拉能力为150A 250A,典型值为200A。输出低电平时,最大灌电流可达20mA。75当口线寄存器为1且引脚本身也为1时,T3导通。T3提供基本驱动电流使准双向口输出为1。如果
40、一个引脚输出为“1”而由外部装置下拉到低时,T3断开,而T2维持导通状态,为了把这个引脚强拉为低,外部装置必须有足够的灌电流能力使引脚上的电压降到门槛电压以下。当口线锁存为1时,T2导通。当引脚悬空时,这个极弱的上拉源产生很弱的上拉电流将引脚上拉为高电平。当口线锁存为0时,T1、T2和T3均截止,T4导通,引脚输出为低电平。76当口线锁存器由0到1跳变时,T1用来加快准双向口由逻辑0到逻辑1的转换。发生这种情况时,T1导通约2个时钟使引脚能迅速地上拉到高电平。准双向口带有一个施密特触发输入以及一个干扰抑制电路。当从端口引脚上输入数据时,T4应一直处于截止状态。假定在输入之前曾输出锁存过数据0,
41、则T4是导通的,这样引脚上的电位就始终被箝位在0电平,使输入高电平无法读入。因此,作为一个准双向口使用时,输入数据时,应先向口写1,使T4截止,然后方可作高阻抗输入。这是准双向口的主要特点。77推挽输入输出工作模式的结构图3-17 推挽输入输出工作模式的I/O位结构78推挽输入输出工作模式的下拉结构与准双向口的下拉结构相同,但当锁存器为“1”时可提供持续的强上拉。推挽工作模式一般用于需要更大驱动电流的情况。工作于推挽输入输出模式时,一个I/O位也带有一个施密特触发输入以及一个干扰抑制电路。此时,若输出高电平,拉电流最大可达20mA;若输出低电平,灌电流也可达20mA。79仅为输入(高阻)工作模
42、式的结构输入口带有一个施密特触发输入以及一个干扰抑制电路。注意,仅为输入(高阻)工作模式下,I/O口不提供20mA灌电流的能力。图3-18 仅为输入(高阻)工作模式的I/O位结构 80开漏输出工作模式的结构图3-19 开漏输出工作模式的I/O位结构81当口线锁存器为0时,开漏输出关断所有上拉场效应管。当作为一个逻辑输出时,这种配置方式必须有外部上拉电阻,即通过电阻外接到Vcc。这种方式的下拉结构与准双向口模式的下拉结构相同。开漏端口带有一个施密特触发输入以及一个干扰抑制电路。这种工作模式下,输出低电平时,灌电流也可达20mA。821、P4口和P5口的使用对STC15F2K60S2单片机P4口和
43、P5口的访问,如同访问常规的P0/P1/P2/P3口一样,并且均可按位寻址,P4的地址C0H,P5口的地址在C8H。单片机的I/O口的使用832、上拉电阻的连接虽然作为准双向口使用时,单片机内部已经集成了上拉场效应管,但在实际应用时,一般情况下,最好还是外接上拉电阻。例如,当外接的是SPI/I2C等漏极开漏的电路时。84以为例,接上拉电阻的电路连接如图所示。典型的上拉电阻的阻值为或者10K。图3-20 上拉电阻的连接方法853、拉电流方式和灌电流方式STC15F2K60S2单片机的I/O口线作为输出可以提供20mA的驱动能力,在使用时,可采用拉电流或灌电流方式。以控制发光二极管电路为例说明,电
44、路连接如图所示。图3-21 拉电流方式和灌电流方式86采用灌电流方式时,应将单片机的I/O口设置为弱上拉/准双向口工作模式;采用拉电流方式时,应将单片机的I/O口设置为推挽/强上拉工作模式。 在实际使用时,应尽量采用灌电流方式,这样可以提高系统的负载能力和可靠性。有特别需要时,可以采取拉电流方式,如供电线路要求比较简单时。87使用时应该特别注意图中的限流电阻千万不能省略,否则,会毁坏I/O口。在按键扫描电路中的两侧需要各加300的限流电阻,或者在编程时不要出现按键两端的I/O口同时为低的情况。884、典型的三极管控制电路单片机I/O引脚本身的驱动能力有限,如果需要驱动功率较大的器件,如小型继电
45、器或者固态继电器,可以采用单片机I/O引脚控制三极管进行输出的方法。以为例。图3-22 典型的三极管控制电路89如果用弱上拉控制,建议加上拉电阻R1(10K);如果不加上拉电阻R1,建议R2的值在15K以上,或用强推挽输出。当需要驱动的功率器件较多时,建议采用ULN2008,其内部采用达林顿结构,是专门用来驱动继电器的芯片,甚至在芯片内部做了一个消去线圈反电动势的二极管。ULN2008的输出端允许通过IC电流200mA,饱和压降VCE约为1V左右,耐压BVCEO约为36V。输出口的外接负载可根据以上参数估算。采用集电极开路输出,输出电流大,可以直接驱动继电器或固体继电器(SSR)。ULN200
46、8可以驱动8个继电器。905、I/O外部状态的输入存在问题:当I/O口工作于准双向口时,由于STC15F2K60S2单片机是1个时钟周期(1T)的8051单片机,速度很快,如果通过指令执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,有时可能读入的状态不对。解决方法:在软件设置由低变高后加1到2个空操作指令延时,然后再读I/O口的状态。916、与的特别说明STC15F2K60S2系列单片机的所有I/O口上电复位后均为准双向口/弱上拉模式。但是由于和口还可以分别作外部晶体或时钟电路的引脚XTAL1和XTAL2,所以和上电复位后的模式不一定就是准双向口/弱上拉模式。当和口作为外部晶体或
47、时钟电路的引脚XTAL1和XTAL2使用时,和上电复位后的模式是高阻输入。92每次上电复位时,单片机对和的工作模式按如下步骤进行设置首先,单片机短时间(几十个时钟)会将和设置成高阻输入;然后,单片机会自动判断上一次用户是将和设置成普通I/O口还是XTAL1/XTAL2;如果上一次用户是将和设置成普通I/O口,则单片机会将和上电复位后的模式设置成准双向口/弱上拉;如果上一次用户是将和设置成XTAL1/XTAL2,则单片机会将和上电复位后的模式设置成高阻输入。937、管脚的特别说明即可作普通I/O使用,也可作复位管脚。当用户将设置成普通I/O口用时,其上电后为准双向口/弱上拉模式。每次上电时,单片
48、机会自动判断上一次用户是将设置成普通I/O口还是复位脚。如果上一次用户是将设置成普通I/O口,则单片机会将上电后的模式设置成准双向口/弱上拉。如果上一次用户是将设置成复位脚,则上电后,仍为复位脚。941、单片机最小系统构成在实际工程应用中,由于应用条件及控制要求的不同,单片机外围电路的组成各不相同。单片机的最小系统就是指在尽可能少的外部电路条件下,能使单片机独立工作的系统。单片机应用系统的典型构成95STC15F2K60S2集成了60KB程序存储器、2048字节RAM、高可靠复位电路和高精度R/C振荡器,一般情况下,不需要外部复位电路和外部晶振只需要接上电源,并在Vcc和GND之间接上滤波电容C1和C2图3-23单片机最小系统96为了能够给单片机下载程序,可以在RXD和TXD引脚上连接RS232和TTL的转换电路,以连接计算机,通过下载工具将用户程序下载到单片机中。RS232和TTL的转换电路如图所示。图3-24 RS232和TTL的转换电路972、非总线扩展方式的单片机应用系统构成STC15F2K60S2单片机内部已经有60KB程序存储器和2048字节RAM,这对于一般应用的存储器需求已经足够。此时,单片机的P0、P2和P4口不用于总线方式,即P0口和P2口用于普通I/O口功能;和不用于写控制信号和读控
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- AI辅助疾病预防中的数据安全与隐私保护问题
- 医学新闻摄影课件
- 从无到有看区块链如何塑造新的版权融资格局
- 以患者教育为核心的健康管理平台构建
- 2025至2030年中国胶印PVC卡数据监测研究报告
- 2025至2030年中国胎牛肾市场调查研究报告
- 从底层革新探讨区块链对提升供应链信息透明度的作用
- 健康教育中的法律责任与规范问题
- 一探未来全面解读下科技趋势下新形态的发展和机遇
- 2025年中国台式冰热饮水机数据监测报告
- 统借统还合同协议
- 2025年上半年中国十五冶金建设集团限公司公开招聘中高端人才易考易错模拟试题(共500题)试卷后附参考答案
- 养老院护理九防内容课件
- CNASGL011-202X实验室和检验机构内部审核指南征求意见稿
- XX镇卫生院综治信访维稳工作方案
- 2023年河南单招语文模拟试题
- GB/T 24894-2025动植物油脂甘三酯分子2-位脂肪酸组分的测定
- 2024南宁青秀区中小学教师招聘考试试题及答案
- 乙型肝炎病人的健康教育
- 《道路运输企业和城市客运企业安全生产重大事故隐患判定标准(试行)》知识培训
- 解读《学前教育法》制定全文课件
评论
0/150
提交评论