2022年广东省潮州市市级名校中考一模数学试题含解析及点睛_第1页
2022年广东省潮州市市级名校中考一模数学试题含解析及点睛_第2页
2022年广东省潮州市市级名校中考一模数学试题含解析及点睛_第3页
2022年广东省潮州市市级名校中考一模数学试题含解析及点睛_第4页
2022年广东省潮州市市级名校中考一模数学试题含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如果向北走6km记作+6km,那么向南走8km记作()A+8km B8km C+14km D2km2完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m3

2、一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=54如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定5如果一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )Ak0,且b0Bk0,且b0Ck0,且b0Dk0,且b06将一把直尺与一块三角板如图所示放置,若则2的度数为( )A50B110C130D1507下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平

3、分的四边形是平行四边形8如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()ABCD9如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()ABCD10如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为_.12如图,已知函数yx+2的图象与

4、函数y(k0)的图象交于A、B两点,连接BO并延长交函数y(k0)的图象于点C,连接AC,若ABC的面积为1则k的值为_13已知,如图,正方形ABCD的边长是8,M在DC上,且DM2,N是AC边上的一动点,则DN+MN的最小值是_14钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为_15已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为_cm(结果保留)16如图RtABC中,C=90,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把BDP沿PD所在直线翻折后,点B落在点Q处,如果QDBC,

5、那么点P和点B间的距离等于_三、解答题(共8题,共72分)17(8分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)18(8分)如图,在AB

6、C中,ACB=90,点O是BC上一点尺规作图:作O,使O与AC、AB都相切(不写作法与证明,保留作图痕迹)若O与AB相切于点D,与BC的另一个交点为点E,连接CD、DE,求证:DB2=BCBE19(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(aa-2+1a2-4);(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是20(8分)如图,在平面直角坐标系xOy中,函数y=kx(x0)的图象

7、经过点A(-1,6),直线y=mx-2与x轴交于点B(-1,0)求k,m的值;过第二象限的点P(n,-2n)作平行于x轴的直线,交直线y=mx-2于点C,交函数y=kx(x0)的图象于点D当n=-1时,判断线段PD与PC的数量关系,并说明理由;若PD2PC,结合函数的图象,直接写出n的取值范围21(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(4,6)、(1,4);请在图中的网格平面内建立平面直角坐标系;请画出ABC关于x轴对称的A1B1C1;请在y轴上求作一点P,使PB1C的周长最小,并直接写出点P的坐标.22(1

8、0分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长2

9、3(12分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定24“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经

10、统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具

11、有相反意义的量2、D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D3、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.4、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD,AC+BC=

12、BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点5、B【解析】试题分析:一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,k0,b0,故选B考点:一次函数的性质和图象6、C【解析】如图,根据长方形的性质得出EFGH,推出FCD=2,代入FCD=1+A求出即可【详解】EFGH,FCD=2,FCD=1+A,1=40,A=90,2=FCD=130,故选C.【点睛】本题考查了平行线的性质,

13、三角形外角的性质等,准确识图是解题的关键7、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大8、B【解析】俯视图是从上面看几何体得到的图形,据此进行判断即可【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(

14、正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形9、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,B,E是半圆弧的三等分点,EOAEOBBOD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6

15、,SABCBCAC6,BOE和ABE同底等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.10、A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA根据垂径定理和勾股定理求解得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r4)2,解得r=6.5考点:垂径定理的应用二、填空题(本大题共6个小题,每小题3分,共18分)11、(a+b)2(ab)24ab【解析】根据长方形面积公式列式,根据面积差列式,得出结论【详解】S阴影4S长方形

16、4ab,S阴影S大正方形S空白小正方形(a+b)2(ba)2,由得:(a+b)2(ab)24ab故答案为(a+b)2(ab)24ab【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出12、3【解析】连接OA根据反比例函数的对称性可得OB=OC,那么SOAB=SOAC=SABC=2求出直线y=x+2与y轴交点D的坐标设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据SOAB=2,得出a-b=2根据SOAC=2,得出-a-b=2,与联立,求出a、b的值,即可求解【详解】如图,连接OA由题意,可得O

17、B=OC,SOAB=SOAC=SABC=2设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),SOAB=2(a-b)=2,a-b=2 过A点作AMx轴于点M,过C点作CNx轴于点N,则SOAM=SOCN=k,SOAC=SOAM+S梯形AMNC-SOCN=S梯形AMNC=2,(-b-2+a+2)(-b-a)=2,将代入,得-a-b=2 ,+,得-2b=6,b=-3,-,得2a=2,a=1,A(1,3),k=13=3故答案为3【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定

18、系数法求函数的解析式等知识,综合性较强,难度适中根据反比例函数的对称性得出OB=OC是解题的突破口13、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解解答:解:如图,连接BM,点B和点D关于直线AC对称,NB=ND,则BM就是DN+MN的最小值,正方形ABCD的边长是8,DM=2,CM=6,BM=1,DN+MN的最小值是1故答案为1点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用14、【解析】解:将170000用科学记数法表示为:1.71故答案为1.7115、【解析】考点:弧长的计算;正多边形和圆分析:本题主要考

19、查求正多边形的每一个内角,以及弧长计算公式解:方法一:先求出正六边形的每一个内角=120,所得到的三条弧的长度之和=3=2cm;方法二:先求出正六边形的每一个外角为60,得正六边形的每一个内角120,每条弧的度数为120,三条弧可拼成一整圆,其三条弧的长度之和为2cm16、2.1或2【解析】在RtACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在RtQEP中,根据勾股定理可求QP,继而可求得答案【详解】如图所示:在RtACB中,C=90,AC=6,BC=8,AB=2,由折叠的性质可得QD=BD,QP=B

20、P,又QDBC,DQAC,D是AB的中点,DE=AC=3,BD=AB=1,BE=BC=4,当点P在DE右侧时,QE=1-3=2,在RtQEP中,QP2=(4-BP)2+QE2,即QP2=(4-QP)2+22,解得QP=2.1,则BP=2.1当点P在DE左侧时,同知,BP=2故答案为:2.1或2【点睛】考查了折叠的性质、直角三角形的性质以及勾股定理此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系三、解答题(共8题,共72分)17、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元【解析】(1)设甲型号的

21、产品有x万只,则乙型号的产品有(20 x)万只,根据销售收入为300万元可列方程18x+12(20 x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价成本列出W与y的一次函数,根据y的范围确定出W的最大值即可【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20 x)万只,根据题意得:18x+12(20 x)=300,解得:x=10,则20 x=2010=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排

22、甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据题意得:13y+8.8(20y)239,解得:y15,根据题意得:利润W=(18121)y+(1280.8)(20y)=1.8y+64,当y=15时,W最大,最大值为91万元所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.18、(1)详见解析;(2)详见解析.【解析】(1)利用角平分线的性质作出BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案(2)根据切线的性质,圆周角的性质,由相似判定可证CDBDEB,再根

23、据相似三角形的性质即可求解【详解】解:(1)如图,O及为所求(2)连接ODAB是O的切线,ODAB,ODB=90,即1+2=90,CE是直径,3+2=90,1=3,OC=OD,4=3,1=4,又B=BCDBDEBDBBE=BCDBDB2=BCBE【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键19、 (1)0;(1)a+2a+1 ,32;(3) 1x1.【解析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d

24、=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论【详解】解:(1)a+e=0,即a、e互为相反数,点C表示原点,b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)a是最小的正整数,a=1,则原式=+=,当a=1时,原式=;(3)A、B、C、D、E为连续整数,b=a+1,c=a+1,d=a+3,e=a+4,a+b+c+d=1,a+a+1+a+1+a+3=1,4a=4,a=1,MA+MD=3,点M再A、D两点之间,1x1,故答案为:1x1【点

25、睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.20、(1)m=-2(2)判断:PD=2PC理由见解析;-1n0或n-3【解析】(1)利用代点法可以求出参数k,m ;(2)当n=-1时,即点P的坐标为(-1,2),即可求出点C,D的坐标,于是得出PD=2PC;根据中的情况,可知n=-1或n=-3再结合图像可以确定n的取值范围;【详解】解:(1)函数y=kx(x0)的图象G经过点A(-1,6),将点A(-1,6)代入y=kx(x0),即6=k-1 ,得:k=-6 直线y=mx-2与x轴交于点B(-1,0),将点B(-1,0)代入y=mx-2,即0=m(-1)-2 ,得:m=

26、-2 (2)判断:PD=2PC 理由如下:当n=-1时,点P的坐标为(-1,2),如图所示:点C的坐标为(-2,2) ,点D的坐标为(-3,2)PC=1 ,PD=2 PD=2PC由可知当n=-1时PD=2PC所以由图像可知,当直线y=-2n往下平移的时也符合题意,即0-2n1 ,得-1n0;当n=-3时,点P的坐标为(-3,6)点C的坐标为(-4,6) ,点D的坐标为(-1,6)PC=1 ,PD=2PD=2PC当-2n6 时,即n-3,也符合题意,所以n 的取值范围为:-1n0或n-3 【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数

27、形结合思想是解题关键.21、(1)(2)见解析;(3)P(0,2)【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,则点P即为所求设直线B1C的解析式为y=kx+b(k0),B1(2,-2),C(1,4),解得:,直线AB2的解析式为:y=2x+2,当x=0时,y=2,P(0,2) 点睛:本题主要考查轴对称图形的绘制和轴对称的应用.22、解:(1)DEAC(1)仍然成立,证明见解析;(

28、3)3或2【解析】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CDE=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90,B =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,BF1=DF1,F1BD=ABC=30,F1DB=90,F1DF1=ABC=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论