RF射频电路设计英文教学课件Lecture09-RFICandSOC_第1页
RF射频电路设计英文教学课件Lecture09-RFICandSOC_第2页
RF射频电路设计英文教学课件Lecture09-RFICandSOC_第3页
RF射频电路设计英文教学课件Lecture09-RFICandSOC_第4页
RF射频电路设计英文教学课件Lecture09-RFICandSOC_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1. Interference and Isolation o Existence of Interference in Circuitry o Definition and Measurement of Isolation o Main Path of Interference in a RF Module o Main Path of Interference in a IC Die2. Shielding for a RF Module by a Metallic Shielding Box3. Strong Desirability to Develop RFIC4. Interfer

2、ence Going Along IC Substrate Path o Experimentation o Trench o Guard Ring5. Solution for Interference Coming from the Sky6. Common Grounding Rules for RF Module and RFIC Design o Grounding of Circuit-branches or Blocks in Parallel o DC Power Supply to Circuit-branches or Blocks in Parallel7. Bottle

3、necks in RFIC o Low Q Inductor and Possible Solution o “Zero” Capacitors o Bonding Wires8. Prospect of SOC9. What is Next?Appendixes o Notes about RFIC layout o Calculation of Quarter Wavelength o Progress of Electronic Industry Lecture 9 : RFIC & SOC Richard Chi-Hsi Li 李缉熙Cellular phone: 1391744136

4、3 (PRC) Email : chihsiliLecture 91*第1页,共48页。o Existence of Interference in Circuitry1. Interference and Isolationo Definition and Measurement of Isolation Point AInterferenceSourcePCB or IC DiePoint BInterferenceSensorPAPBFigure 1 Definition of isolation between node A and B.AttenuationIsolationIsol

5、ation = - Attenuation of interference. , dB , dB Lecture 92*第2页,共48页。o Main Path of Interference in a RF Moduleo Main Path of Interference in a IC Die * From the sky!* From the “ground” - the substrate!Lecture 93*第3页,共48页。o Definition and Measurement of Isolation o Main Path of Interference in a RF

6、Moduleo Main Path of Interference in a IC Die Lecture 94*第4页,共48页。2 . Schielding for a RF Module by a Metallic Shielding Box Figure 2 Shielding for a RF module PCB of One RF block(Parts and runners are neglected)Metallic shielding boxMain PCBHole for receiving of short stub from PCBPin receiverRunne

7、r on bottom sideShort stubEarPinSlot for receiving the ear of metallic shielding boxSlot for sliding of PCB into metallic shielding boxLecture 95*第5页,共48页。3. Strong Desirability to Develop RFICThe great advantages of the IC are: Greatly reduced cost, down by at least 10 times; Greatly reduced size,

8、down more than 1000 times; Greatly enhanced reliability of product, by at least 100 times.Lecture 96*第6页,共48页。4. Interference Going Along IC Substrate Path o ExperimentationTo Network Analyzer Port 1 P+N+N+GNDIC die (Vertical profile) P-substrateFigure 3 IC die sample for experiment of interference

9、from substrateN+ P substrateContactP+ GNDDddPoint BInterferenceSensor Point AInterferenceSourceTo Network Analyzer Port 2Lecture 97*第7页,共48页。Figure 4 Measured attenuation of interference from source A to sensor B or isolation from sensor B to source A when D 150m, d 50m.Attenuation ofinterference S2

10、1, dB-10-20-40-60-10010 510 710 810 910 1010 6Frequency, Hz-80IsolationFrom sensor to source,-S21, dB1020406010080Table 1 Interference attenuation or isolation when interference signal goes along IC substrate pathS21 - 40 dB, when f =10 MHz, S21 - 30 dB, when f =100 MHz, S21 - 20 dB, when f =1000 MH

11、z, Lecture 98*第8页,共48页。o TrenchFigure 5 Trenching of a RF block is to dig a deep ditch encompassing the RF blockMain PCBOne RF blockExternalinterferencesourceIC substrateA deep ditchInternalinterferencesourceLecture 99*第9页,共48页。o Guard RingTo Network Analyzer Port 1 P+N+N+GND P-substrate IC die (Ver

12、tical profile) GNDFigure 6 IC die sample for experiment of interference from substrate- Interference source is circled by a P+ guard ring N+ P substrateContactP+ DddPoint BInterferenceSensor Point AInterferenceSourceTo Network Analyzer Port 2P+P+P+ Guard ringP+ Guard ringLecture 910*第10页,共48页。Figure

13、 7 Measured attenuation of interference from source A to sensor B or isolation from sensor B to source A when D 150m, d 50mAttenuation ofinterference, S21, dB-10-20-40-60-10010 510 710 810 910 1010 6Frequency, Hz-80IsolationFrom sensor to source,-S21, dB1020406010080With P+ guard ringWithout P+ guar

14、d ringTable 2 Comparison of interference attenuation or isolation between the cases with and without P+ guard ring Without P+ guard ringWith P+ guard ring Frequency S21 - 40 dB, - 80 to - 70 dB, 10 MHz, S21 - 30 dB, - 60 to - 55 dB, 100 MHz, S21 - 20 dB, - 40 dB, 1000 MHz.Lecture 911*第11页,共48页。(a) T

15、renching ditch(b) P+ and deep N-well Figure 8 Trenching ditch is replaced by P+ and deep N-wellDeep N-wellP+ guard ringRF blockRF blockTrenching ditchS1=10 mS2=1 mWP=10 mWN=10 m Table 1 Typical width of guard ring and spacing between guard rings in a RFIC layoutItem Value . Spacing between RF block

16、and P+ guard ring,S1 = 10 m,Spacing between P+guard ring and deep N-well,S2 = 1 m, Width of P+ guard ring,WP = 10 m,Width of deep N-well guard ring,WN = 10 m.Lecture 912*第12页,共48页。5. Solution for Interference Coming from the SkyG GNDFigure 9 Electric lines either radiated from RFIC die internally or

17、 radiated to RFIC die externally would be terminated on the grounded guard ring.Electric line from insideElectric line from outsideP+ guard ringRFIC- One RF BlockLecture 913*第13页,共48页。P+ guard ringFigure 10 Typical width , spacing and connections of P+ and N-well guard ring.N-well guard ringS2=1 mS1

18、=10 mWN=10 mWP=10 mRF Circuit BlockVddGNDLecture 914*第14页,共48页。6. Common Grounding Rules for RF Module and RFIC Designo Grounding of Circuit-branches or Blocks in ParallelIC Die or PCBBlock # 3VCO Block #1LNABlock # 2MixerGND (at DC power supply)Figure 11(a) Incorrect grounding connection in series

19、or stacked together Ground ringLecture 915*第15页,共48页。IC Die or PCBBlock # 3VCO Block #1LNABlock # 2MixerGND (at DC power supply)Figure 11 (b) Correct grounding connection in parallel or separately Ground ringLecture 916*第16页,共48页。o DC Power Supply to Circuit-branches or Blocks in ParallelIC Die or P

20、CBBlock # 3VCO Block #1LNABlock # 2MixerVdd or VCC (at DC power supply)Figure 12 (a) Incorrect DC power supply connection in series or stacked together DC power supply ring (N-well guard ring in IC Die)Lecture 917*第17页,共48页。IC Die or PCBBlock # 3VCO Block #1LNABlock # 2MixerVdd or Vcc (at DC power s

21、upply)Figure 12 (b) Correct DC power supply connection in parallel or separately DC power supply ring (N-well guard ring in IC Die)Lecture 918*第18页,共48页。7. Bottlenecks in RFIC Designo Low Q Inductor and Possible Solution Figure 13 Spiral configuration of an inductor in IC chipCPoRPCSCPRPCSCPRSLSZiZo

22、Figure 14 Model of a spiral inductorSpiral inductorLecture 919*第19页,共48页。 Skin effect* Possible reasons of Low Q value For copper, 0.66 m , when frequency = 10 GHz , 6.6 m , when frequency = 100 MHz. T 0.1 m. (Thickness of the metal layer in IC) Unfortunately, the experiments indicate that the thin

23、thickness of the metal layer is not the main reason that brings about the low Q value of the IC spiral inductor.2) Attenuation due to the Existence of Substrate(Top view)(Side view)Figure 13a Digging of the substrate beneath the spiral wire awayLecture 920*第20页,共48页。3) Flux LeakageFigure 13b. Squeez

24、ing of windings so as to reduce the spacing between windings. Lecture 921*第21页,共48页。Flux into paperFlux out from paperFigure 15 Cancellation of flux between two windings4) Flux Cancellation Lecture 922*第22页,共48页。* Possible Solution of Low Q Value - Compensation of negative resistance LLrQ=L/rFigure

25、16 Change of an inductors Q value by adding of negative resistance into inductor in series.-rr-rQ=L/(r-r)However, it is not so simple in actual engineering design. The difficult points are: Generating a negative resistance; Ensuring that there is not negative resistance outside the expected bandwidt

26、h; The remained negative resistance inside the bandwidth must be kept below a small positive value ; Reducing current consumption of generating negative resistance, which is usually done by an active device; Handling the noise generated due to the existence of the active device.Lecture 923*第23页,共48页

27、。o “Zero” Capacitors o Bonding Pad & WiresMetal # 1Metal # 2PassivationPassivationTEOSOxideP - wellN- wellP - wellP+ buriedP+ buriedN+ buried layerP - substrateFigure 16a Bonding pad cross sectionPackage size: 7.5x7.5 mmWire diameter: 1.0 milDie size: 4x4mm. Frequency: 1.8GHz.Simulation Values (Note

28、:Bond Wire Effects are included.) R(mohm) Ls(nH) Lm(nH) CL(pF) Cm(pF)Max 540 1.80 0.36 0.180 0.080Min 400 1.40 0.32 0.120 0.020RRRCmRCmLsLmLmLsLsLsCLCLCLCLBoardDieFigure 16b Example of bonding wires modelLecture 924*第24页,共48页。8. Prospect of SOCo Remove All the Bottlenecks in RFIC Design The main bot

29、tlenecks in RFIC design are: Enhancing the low Q value of the spiral inductor; Developing a “zero” capacitor directly on the RFIC chip; Modeling the bonding wire with higher accuracy.o Continue to Study Isolation Studying isolation between RF blocks Studying isolation between digital blocks. Studyin

30、g isolation between RF and digital blocks. Lecture 925*第25页,共48页。9. What is Next?SoftwareHardwareHigh data rateResemble Product(RP)20XXs?System on Chip(SOC)Analog ICDigital IC RFIC 19951990s to 20XXsFigure 17 Prospect of a communication system Hardware Hardware-Software SoftwareLNADown-converterDe-M

31、odulatorD to APAUp-converterModulatorA to DControl(SOC)ReceiverServiceI/OTransmitterOSCD to APAA to DControl(RP)ServiceI/OReceiverTransmitterOSCLNALecture 926*第26页,共48页。Appendixes o Runner * Length and widthA.1 Notes About RFIC Layout* Multiple runners or curves in parallel Figure A.1 Multiple runne

32、rs or multiple curves in parallel are not welcome.Multiple runners in parallel!Multi curves in parallel!No !No !* Style of runner : As short as possible* Smooth of the runner : As smooth as possible * Placement of runners : Do perpendicular , not parallel as possible* Corner of the runner : As smoot

33、h as possible Lecture 927*第27页,共48页。* Runners in parallel ABCDWSrrFigure A.2 Spacing between two runners in parallel.* Runner in parallel with grounded edgeFigure A.3 Spacing between runner and ground surface in parallel.ABWSrgGround surfaceRunnerFigure A.4 Spacing between runner and ground surface

34、in parallel.WSrggGround surfaceRunnerSrggLecture 928*第28页,共48页。* Style of runner“Nice looking” - NO!“E-W, S-N” - NO!As short as possible -Yes!ABABFigure A.5 Two runner styles from A to B.* Corner of the runnerRectangular- Lousy!Circular-the best!45o-OK!BABAABFigure A.6 Three different corners of run

35、ner from A to B.Lecture 929*第29页,共48页。* Preference of the adjacent runnersIn parallel - Reluctant!Perpendicular - Welcome!CADABCBCDFigure A.7 Draw two adjacent runners in perpendicular, not in parallel* Spacing between adjacent runners(It does not matter for DC runner.)S 3 W - Yes!ABCDWSFigure A.8 S

36、pacing between two runners in parallel.Lecture 930*第30页,共48页。* Comparison of even and un-even runnerslABW0ZOZL(a) An even runner : W0= 6 m, Z0= 50.2 ohm, l = 100 m, CDW1W0l/2l/2Z0Z1ZL(b) An uneven runner : W0= 30 m, Z0= 21.2 ohm, l/2 = 50 m, W1= 6 m, Z1= 50.2 ohm, l /2= 50 m, ZC = 48.4 j7.9 ohm ZL=

37、50 + j0 ohmZA = 50 + j0 ohmZL= 50 + j0 ohmAdditional Capacitor:In seriers: -j7.9 ohm = 20.15 8.39 3.47 2.01 pF 1.0 2.4 5.8 10.0 GHzIn parallel: -j7.9 ohm = 20.15 8.39 3.47 2.01 pF 1.0 2.4 5.8 10.0 GHz Figure A.9 Comparison of impedance between even and uneven runnerLecture 931*第31页,共48页。* Summary ab

38、out runners Smoothly Perpendicular from each other as possible As short as possibleABZABZ1Z2PFigure A.10 Width of runner changed gradually, not suddenly.* Preference of smooth runnerLecture 932*第32页,共48页。 o Parts * Device : Not “dragon”, but square!But square!SourceDrainGateGateSourceDrainFigure A.1

39、1 Devices must be arranged in a “square” but not a “dragon” shape.Lecture 933*第33页,共48页。* Inductor : Be care of the coupling!D d1, d2 Add guard ringd2Dd1Cross-talk or coupling!Guard ringFigure A.12 Cross-talk between two inductorsLecture 934*第34页,共48页。* capacitor(b) Study of capacitor with high capa

40、citor/area is in progress.Capacitor in RFIC is currently limited by its area, It is ruled less than about 20 pFFigure A.14 Area of capacitor is one of important R & D projects at present* ResistorIn order to enhance the tolerance, . 10 identical resistors connected in parallel to form a resistor10 x

41、 10 kohms1 kohmsFigure A.13 A desired 1 kohms resistor ohm is replaced by 10 resistors in parallel, the value of each resistor being 10 kohms.Lecture 935*第35页,共48页。o Parts must be located in a symmetrical way for differential circuit.o Via : The smaller the hole, The higher the inductance and resist

42、ance! o Free space is OK. Dont try to cover all the free space with grounding metal ! Lecture 936*第36页,共48页。* Ideal number : 1* Key issue : variable components by means of trimming or variable components by means of switching (Rather than switching, the trimming is to be preferred.)o How many times

43、of tape-out ? DeviceCut!Cut!Cut!GateSourceDrainCut!Cut!Cut!Figure A.15 Variable deviceLecture 937*第37页,共48页。 Capacitor ResistorCut!Cut!Cut!(a) Variable capacitor Cut!Cut!Cut!Cut!Cut!Cut!(b) Variable resistor Cut!Cut!Cut!Cut!(c) Variable inductorFigure A.16 Layout of RFIC variable parts InductorLectu

44、re 938*第38页,共48页。* Example : Layout for PA +LNA+Antenna SW.Figure A.17 An example of RFIC layout with variable partsLecture 939*第39页,共48页。o Pin distributionL/Nr/NNC1NC2N pieces of ViaRunner BRunner AFigure A.18 Equivalent circuit of multi-viao Via * Insert “GND” pad in the middle of differential pai

45、r pads. * Insert “GND” pads between two groups of pads, which correspond to two blocks respectively Lecture 940*第40页,共48页。A.2 Calculation of Quarter Wavelength, F/cm nH/cm, F/cm, where Cmsl = Capacitance per unit length in respect to the substrate, W = Width if micro strip line Xint = Thickness of o

46、xide layer, ox = Electric permittivity of the silicon-oxide layer, and Lmsl = Self-inductance per unit length along the runner, Xsi = Thickness of silicon substrateLecture 941*第41页,共48页。XintXSiGround planeSilicon SubstrateoxFigure A.19 Various parameters of a micro strip line on silicon substrate.WM

47、icro strip line or runnerOxide layerLecture 942*第42页,共48页。 W, m C, pF/cm L, nH/cm Freq, Hz QWL, mm l,5o, m Freq, Hz QWL, mm l,5o, m Freq, Hz QWL, mm l,5o, m Freq, Hz QWL, mm l,5o, m Table A.1 Quarter wavelength (QWL) on RFIC die by CMOS1 1.45 16.59 1.0E+09 16.09 894 2.4E+09 6.71 373 5.8E+09 2.77 154

48、 10.0E+09 1.61 8922.24 15.20 1.0E+09 13.55 753 2.4E+09 5.65 314 5.8E+09 2.34 130 10.0E+09 1.36 75 33.00 14.39 1.0E+09 12.04 669 2.4E+09 5.02 279 5.8E+09 2.08 115 10.0E+09 1.20 67 4 3.73 13.82 1.0E+09 11.01 612 2.4E+09 4.59 255 5.8E+09 1.90 105 10.0E+09 1.10 6154.45 13.37 1.0E+09 10.25 569 2.4E+09 4.

49、27 237 5.8E+09 1.77 98 10.0E+09 1.02 57 10 7.98 11.98 1.0E+09 8.08 449 2.4E+09 3.37 187 5.8E+09 1.39 77 10.0E+09 0.81 4515 11.46 11.17 1.0E+09 6.99 388 2.4E+09 2.91 162 5.8E+09 1.20 67 10.0E+09 0.70 39 20 14.93 10.60 1.0E+09 6.29 349 2.4E+09 2.62 145 5.8E+09 1.08 60 10.0E+09 0.63 35 30 21.84 9.79 1.

50、0E+09 5.41 300 2.4E+09 2.25 125 5.8E+09 0.93 52 10.0E+09 0.54 30 40 28.75 9.21 1.0E+09 4.86 270 2.4E+09 2.02 112 5.8E+09 0.84 47 10.0E+09 0.49 27 50 35.66 8.77 1.0E+09 4.47 248 2.4E+09 1.86 104 5.8E+09 0.77 43 10.0E+09 0.45 25100 70.17 7.38 1.0E+09 3.47 193 2.4E+09 1.45 80 5.8E+09 0.60 33 10.0E+09 0

51、.35 1960 42.56 8.40 1.0E+09 4.18 232 2.4E+09 1.74 97 5.8E+09 0.72 40 10.0E+09 0.42 2375 52.92 7.96 1.0E+09 3.85 214 2.4E+09 1.61 89 5.8E+09 0.66 37 10.0E+09 0.39 21200 139.17 6.00 1.0E+09 2.74 152 2.4E+09 1.14 63 5.8E+09 0.47 26 10.0E+09 0.27 15500 346.18 4.22 1.0E+09 2.07 115 2.4E+09 0.86 48 5.8E+0

52、9 0.36 20 10.0E+09 0.21 11Assuming that Xint=0.5 m, Xsi=500 m, and ox= 3.45x10-13 F/cm, Note: l,5o, m = Length of runner corresponding to phase shift 5o.Lecture 943*第43页,共48页。Frequency, GHz 52.57.510005102015QWL, mmW= 1 mW=10mFigure A.20 Quarter wavelength (QWL) vs. FrequencyLecture 944*第44页,共48页。9A

53、.3 Progress of Electronic Industry o Evolutiono Why people are focusing on RFIC at present?* Technology for logic or digital IC with low data rate is OK; * Technology for RFIC is still in the development phase; * Technology for logic or digital IC with high data rate must be based on RFIC Technology

54、. Vacuum Tube(VT)1910s to dateSemi-Conductor Device(SC)1940s to dateIntegrated Circuit(IC)1960s to dateSystem on Chip(SOC)Analog ICDigital IC RFIC 19951990s to dateCostSizeCurrentReliabilityFigure A.21 Milestones in history of electronic industryLecture 945*第45页,共48页。CompanyMotorolaPhilipsTek/MaximH

55、arrisAD/IBMTechnologyMOSIC-5QB1C1QUICKCHIP-8UHF-1SiGeBiCmos85GST-2C-PIft(NPN)12/12 GHz13 GHz12/27/12 GHz8.6 GHz50 GHzft(PNP)700/50M200MHz8.5G/50M8.5GHz 4GHzStatusProProPro/DevProDevCycle time50 days90 days30-70 days90 days90 daysRiskM-H/M-HML/M-H/L-MM-HM-HM-H$/wafer$1.2k/2kTBD$10kTBD$2kDesign sys.Cadence-QUICKICFASTRACSPICERF ICMC13142SA601/6203600o RFIC developmentTable A.2 Early status of RF IC development (1995 1996)Table A.3 Performance of RF front end IC development (1996)Company(Motorola)(Philips)ChipMC13142*)SA601*)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论