




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第11章函数与一次函数一、选择题(2011重庆市潼南,8,4分)目前,全球淡水资源日益减少,提倡全社会节约用水.据 测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有 把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水, 请写出y与x之间的函数关系式是A. y=0.05x B. y=5x C. y=100 xD. y=0.05x+100【答案】B(2010湖北孝感,7, 3分)一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水 中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到 甲地.设轮船从甲地出发后
2、所用的时间为t (小时),航行的路程为s (千米),则s与t的函 数图象大致是()【答案】B(2011广东广州市,9, 3分)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A. y-7B. y9 C. y9 D. y0,n0,n2C. m0,n2 D. m2【答案】D(2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米) 随时间(时)变化的图象(全程)如图所示.有下列说法:起跑后1小时内,甲在乙的前 面;第1小时两人都跑了 10千米;甲比乙先到达终点;两人都跑了 20千米.其中正 确的说法有()A. 1个 B. 2个 C.3个 D. 4个
3、【答案】C(2011浙江杭州,7,3) 一个矩形被直线分成面积为x,y的两部分,则y与x之间 的函数关系只可能是【答案】A(2011浙江衢州,9,3分)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为,且,则小亮同学骑车上学时,离家的路程与所用时间的函数关系图像可能是()【答案】C(2011浙江省,9, 3分)如图,在平面直角坐标系中,线段AB的端点坐标为A (-2,4),B (4, 2),直线y=kx-2与线段AB有交点,则k的值不可能是()A.-5B.-2C.3 D. 5【答案】B(2011台湾台北,9)图(三)的坐标平面上,有一条通过点(-3
4、,-2)的直线L。若四点(-2 , a)、(0 , b)、(c , 0)、(d ,-1)在L上,则下列数值的判断,何者正确?A. a = 3 B。b 2C。cV 3D。d = 2【答案】C(2011台湾全区,1 )坐标平面上,若点(3, b)在方程式 的图形上,则b值为何?A.-1 B. 2 C. 3D. 9【答案】A(2011江西,5, 3分)已知一次函数y=x+b的图像经过一、二、三象限,则b的值可以是().A.-2B.-1C.0D.2【答案】D(2011江西,8, 3分)时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5. 在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时
5、针与分针的夹角为y(度), 运行时间为t (分),当时间从12: 00开始到12: 30止,y与t之间的函数图像是().【答案】C(2011江苏泰州,5, 3分)某公司计划新建一个容积V(m3)一定的长方体污水处 理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vh(h/0),这个 函数的图像大致是 TOC o 1-5 h z HYPERLINK l bookmark88 o Current Document A.B.C.D.【答案】C(2011四川成都,3,3分)在函数自变量 的取值范围是A HYPERLINK l bookmark53 o Current Document
6、(A)(B)(C)(D)【答案】A(2011湖南常德,16,3分)设min x,y表示x,y两个数中的最小值,例如min0,2 =0,min 12,8 =8,则关于x的函数y可以表示为()A.B.C. y =2xD. y=x+2【答案】A(2011江苏苏州,10,3分)如图,已知A点坐标为(5,0),直线y=x+b (b0) 与y轴交于点B,连接AB,4=75,则b的值为A.3 B.C.4D.【答案】B (201 1广东株洲,7, 3分)根据生物学研究结果,青春期男女生身高增长速度呈现 如下图规律,由图可以判断,下列说法错误的是:()男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速
7、度放慢C. 11岁时男女生身高增长速度基本相同 D.女生身高增长的速度总比男生慢【答案】D(2011山东枣庄,10,3分)如图所示,函数 和 的图象相交于(一1,1),(2, 2)两点.当时,x的取值范围是()A. x 1B. 1 x2 D. x2【答案】D(201 1江西南昌,5, 3分)已知一次函数y=x+b的图像经过一、二、三象限,则b 的值可以是().A.-2B.-1C.0D.2【答案】D(201 1湖南怀化,7, 3分)在平面直角坐标系中,把直线y=x向左平移一个单位长 度后,其直线解析式为A. y=x+1B.y=x-1 C.y=x D. y=x-2【答案】B(201 1四川绵阳4,
8、 3)使函数y=1-2x有意义的自变量x的取值范围是A.x 12B.x/12【答案】A(201 1四川乐山3, 3分)下列函数中,自变量x的取值范围为xV1的是A.B.C. D.【答案】D(201 1四川乐山8, 3分)已知一次函数 的图象过第一、二、四象限,且与x轴交于点(2, 0),则关于x的不等式 的解集为A. x -1 C. x1 D. x 0.B. x 2. C. x 2.D. x -3 B.-3 且 C. D.且【答案】B(2001 1江苏镇江,5,2分)若 在实数范围内有意义,则x的取值范围是()A.x2B.x2 D.x0 B. x 0 且 x/l C. x0 且 x/l【答案】
9、D(201 1河北,5, 2分)一次函数y=6x+1的图象不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限【答案】D35. (201 1浙江绍兴,9, 4分)小敏从地出发向地行走,同时小聪从地出发向地行 走,如图所示,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间 的关系,则小敏、小聪的速度分别是()A.3km/h和 4km/h B.3km/h 和 3km/h C.4km/h 和 4km/h D.4km/h 和 3km/h【答案】D(201 1四川重庆,8, 4分)为了建设社会主义新农村,我市积极推进“行政村通畅工程”,张村和王村之间的道路需要进行改造,施工队在工作
10、了一段时间后,因暴雨被迫停 工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该 工程尚未改造道路里程y(公里)与时间x(天)的函数关系的大致图像是()A.B.C.D.【答案】A(201 1山东潍坊,8, 3分)在今年我市初中学业水平考试体育学科的女子800米耐 力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的 函数图象分别为线段OA和折线OBCD .下列说法正确的是()小莹的速度随时间的增大而增大小梅的平均速度比小莹的平均速度大在起跑后180秒时,两人相遇在起跑后50秒时,小梅在小莹的前面【答案】D(2011四川内江,10,3分)
11、小高从家骑自行车去学校上学,先走上坡路到达点A, 再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。放学后, 如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从 学校到家需要的时间是A.14分钟B.17分钟C.18分钟 D.20分钟【答案】D(2011四川宜宾,8,3分)如图,正方形ABCD的边长为4, P为正方形边上一动点, 运动路线是AfDfCfBfA,设P点经过的路线为X,以点A、P、D为顶点的三角形的面 积是y.则下列图象能大致反映y与x的函数关系的是()【答案】B(2011山东济宁,7, 3分)如图,是张老师出门散步时离家的距离与时
12、间之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()【答案】D(2011湖南常德,15, 3分)小华同学利用假期时间乘坐一大巴去看望在外打工的妈 妈.出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满 了油,接着按原速度行驶,到目的地时油箱中还剩有 箱汽油.设油箱中所剩的汽油量为V(升),时间为t的大致图象是()【答案】D(2011福建泉州,6, 3分)小吴今天到学校参加初中毕业会考,从家里出发走10 分钟到离家500米的地方吃早餐,吃早餐用了 20分钟;再用10分钟赶到离家1000米的 学校参加考试.下列图象中,能反映这一过程的是()
13、.【答案】D(201 1湖南益阳,8, 4分)如图3,小红居住的小区内有一条笔直的小路,小路的 正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s 之间的变化关系用图象刻画出来,大致图象是【答案】C(2011重庆綦江,9, 4分)小明从家中出发,到离家1.2千米的早餐店吃早餐,用了一 刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大 致图象是( )A.B.C.D.【答案】:B(201 1江西南昌,8, 3分)时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针
14、的夹角为y (度),运行时间为t (分),当时间从12: 00开始到12: 30止,y与t之间的函数图 像是().A.B.C.D.【答案】A(2011江苏南通,9, 3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s (单位:千米),甲出发后的时间为t (单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确 的是甲的速度是4千米/小时乙的速度是10千米/小时乙比甲晚出发1小时甲比乙晚到B地3小时【答案】C(2011山东临沂,14, 3分)甲、乙两个同学从400m环形跑道上的同一点出发,同向而行,甲的速度为6m/s,乙
15、的速度为4m/s.设经过x (单位:s)后,跑道上此两人间的较短部分的长度为y (单位:m),则y与x (0 x00)之间函数关系可用图像表 示为()CD【答案】C(2011贵州贵阳,8, 3分)如图所示,货车匀速通过隧道(隧道长大于货车长)时, 货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致 是(第8题图)【答案】A(2011湖南永州,14, 3分)如图所示,在矩形ABCD中,垂直于对角线BD的直线, 从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间 为t,则y关于t的函数的大致图象是()【答案】A.(201 1江苏盐城,8,
16、3分)小亮从家步行到公交车站台,等公交车去学校.图中的 折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是他离家8km共用了 30min他等公交车时间为6min他步行的速度是100m/minD.公交车的速度是350m/min【答案】D(2011安徽芜湖,4, 4分)函数 中,自变量 的取值范围是().A. B. C. D.【答案】A(201 1安徽芜湖,7, 4分)已知直线 经过点 和,则 的值为(). TOC o 1-5 h z HYPERLINK l bookmark130 o Current Document A. B. C.D.【答案】B二、填空题(20
17、11广东东莞,7, 4分)使在实数范围内有意义的x的取值范围是.【答案】(2011山东威海,18, 3分)如图,直线轴于点,直线轴于点,直线轴于点,直线轴于点.函数的图象与直线,.分别交于点,;函数的图象与 直线,分别交于点,如果的面积记作,四边形的面积记作,四边形 的面积记作,四边形的面积记作,那么【答案】2011.5(2011浙江义乌,11, 4分)一次函数y=2x1的图象经过点(a,3),则a= .【答案】2(2011江西,11,3分)函数y=中,自变量x的取值范围是 【答案】x1.提示:x-10.(2011广东株洲,14, 3分)如图,直线l过A、B两点,A(, ),B(,),则直线l
18、的解析式为 .【答案】y=x-1(2011江苏苏州,14,3分)函数y=的自变量x的取值范围是【答案】x1(2011江苏宿迁,10,3分)函数中自变量x的取值范围是.【答案】x丰2(2011江苏泰州,17, 3分)“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,则弹簧的总长度y (cm)与所挂物体质量x(kg)之间的函数关系式是y=10+0.5x (0 x5).王刚同学在阅读上面材料时就发现部分内容被墨迹污染,被污染部分是确定函数关系式的一个条件,你认为该条件可以是:(只需写出一个).【答案】悬挂2kg物体弹簧总长度为11cm.(
19、答案不唯一)(2011广东汕头,7, 4分)使在实数范围内有意义的x的取值范围是.【答案】(2011四川广安,13, 3分)函数中自变量的取值范围是_【答案】2(2011江西南昌,11, 3分)函数y=中,自变量x的取值范围是【答案】x1(2011山东济宁,11, 3分)在函数中,自变量 的取值范围是【答案】 (201 1四川成都,21,4分)在平面直角坐标系中,点P(2,)在正比例函数 的图象上,则点Q()位于第象限.【答案】四.(2011广东省,7,4分)使在实数范围内有意义的x的取值范围是.【答案】(201 1湖南怀化,12, 3分)一次函数y=-2x+3中,y的值随x值增大而.(填“增
20、大”或“减小”)【答案】减小(2011江苏南通,13, 3分)函数y=中,自变量x的取值范围是.【答案】x/1.(201 1上海,10,4分)函数的定义域是.【答案】x 4(201 1湖南衡阳,15, 3分)如图,一次函数的图象与轴的交点坐标为(2, 0),则下列说法:随的增大而减小;0;关于的方程的解为.其中说法正确的有(把你认为说法正确的序号都填上).【答案】(201 1湖南邵阳,12, 3分)函数中,自变量x的取值范围是。【答案】x1.(201 1贵州贵阳,12, 4分)一次函数y=2x-3的图象不经过第象限.【答案】二(2001 1江苏镇江,16,2分)已知关于x的一次函数y=kx+4
21、k-2(k/0).若其图象经过原点,则k=;若y随x的增大而减小,则k的取值范围是.答案:,k2(2011湖南湘潭市,12, 3分)函数 中,自变量 的取值范围是.【答案】x/1(2011湖北武汉市,15, 3分)一个装有进水管和出水管的容器,从某时刻起只打开 进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水 管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x (单位:分钟)之间的 函数关系如图所示.关停进水管后,经过 分钟,容器中的水恰好放完.【答案】8(201 1湖南衡阳,18, 3分)如图所示,在矩形ABCD中,动点P从点B出发,沿 BC,CD,
22、 DA运动至点A停止,设点P运动的路程为,ABP的面积为,如果 关于 的 函数图象如图所示,那么 ABC的面积是 .【答案】10(201 1山东东营,16, 4分)如图,用锤子以相同的力将铁钉垂入木块,随着铁钉的 深入,铁钉所受的阻力也越来越大。当铁钉进入木块部分长度足够时,每次钉入木块的铁钉 长度是前一次的。已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击 后,铁钉进入木块的长度是acm,如铁钉总长度是6cm,则a的取值范围是【答案】三、解答题( (2011浙江杭州,17, 6)点A, B, C, D的坐标如图,求直线AB与直线CD的交 点坐标.【答案】求直线AB和CD的解析
23、式分别为:,解方程组得:,则直线AB与直线CD的 交点坐标为.(2011浙江湖州,19, 6)已知:一次函数 的图象经过M(0,2),(1,3)两点.求k、b的值;(2)若一次函数的图象与x轴的交点为A(a, 0),求a的值.【答案】由题意得,解得,.,b的值分别是1和2.(2)由(1)得,当 y=0 时,x = 2,即 a= 2.(2011 浙江省,23, 12 分)设直线 I1:y1=k1x+b1 与 I2:y2 = k2x+b2,若 1112,垂足为H,则称直线l1与l2是点H的直角线.已知直线;和点C (0,3) .则直线和是点C的直角线(填序号即可); 如图,在平面直角坐标系中,直角
24、梯形OABC的顶点A (3,0)、B (2,7)、C (0,7), P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2 是点P的直角线,求直线l1与l2的解析式.【答案】(1 )画图象可知,直线与直线是点C的直角线;(点C的坐标似乎有问题)(2)设 P 坐标为(0, m),则 PBPB 于点 P。因此,AB2=(3-2)2 + 72 = 50,又/ PA2 = PO2+OA2 = m2 + 32, PB2 = PC2 + BC2=(7-m)2 + 22 ,.AB2 = PA2 + PB2 = m2 + 32+(7-m)2 + 22 = 50解得:m1=1,
25、m2=6.当 m = 1 时,11 为:y1= , 12 为:y2=;当 m=6 时,11 为:y1= , 12 为:y2=;(2011浙江温州,24, 14分)如图,在平面直角坐标系中,O是坐标原点,点A的 坐标为(一4, 0),点B的坐标为(0,b)(b0). P是直线AB上的一个动点,作PCx轴, 垂足为C.记点P关于y轴的对称点为P(点P不在y轴上),连结PP,PA,PC.设点 P的横坐标为a.当 b = 3 时,求直线AB的解析式;若点P的坐标是(-1, m),求m的值;若点P在第一象限,记直线AB与PC的交点为D.当PD: DC=1: 3时,求a的值;是否同时存在a,b,使PCA为
26、等腰直角三角形?若存在,请求出所有满足要求的a, b的值;若不存在,请说明理由.【答案】解:(1)设直线AB的解析式为y=kx+3,把x = 4, y=0代人上式,得一4k+3 = 0, /.,由已知得点P的坐标是(1 , m),. , .PPIIAC,/.PPDaACB,/.,.(3)以下分三种情况讨论.当点P在第一象限时,i)若zAPC= 90, PA= PC (如图 1 ),过点 P作 PHx 轴于点H, .PP=CH=AH = PH =AC,. , .PH = PC= AC, aACPaAOB,.,即,.ii)若zPAC=90, PA= CA(如图 2),则 PP=AC, .2a=a+
27、4, . a=4.PA=PC =AC, aACPaAOB,即,.iii)若zPCA =90,则点P, P都在第一象限,这与条件矛盾,.PCA不可能是以C为直角顶点的等腰直角三角形.当点P在第二象限时,zPCA为钝角(如图3),此时PCA不可能是等腰直角三角形.当点P在第三象限时,ZPAC为钝角(如图4),此时PCA不可能是等腰直角三角形, 所有满足条件的a, b的值为.(2011浙江绍兴,21, 10分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点分别作轴,轴 的垂线,与坐标轴围成矩形的周长与面积相等,则点是和谐点.(1)
28、判断点是否为和谐点,并说明理由;(2)若和谐点在直线上,求点的值.【答案】(1)点不是和谐点,点是和谐点.(2)由题意得,当时,点在直线上,代入得;当时,点在直线上,代入得.6.(2011江苏盐城,28,12分)如图,已知一次函数y = - x +7与正比例函数y = 43 x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线l|y轴.动点P从原点O出发,以每秒1 个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度沿 x轴向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点 P到达点A时,点P和
29、直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.当t为何值时,以A、P、R为顶点的三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请 说明理由.【答案】(1)根据题意,得y=-x+7y=43x,解得x=3y=4, A(3, 4).令 y=-x+7=0, 得 x=7. /.B (7, 0).(2)当P在OC上运动时,0utV4.由 SqPR=S 梯形 COBA-SaACP-SaPOR-SaARB=8,得12(3 + 7)x4-12x3x(4-t)- 12t(7-t)- 12tx4 = 8整理,得 t2-8t+12=0,解之得 t1=2,t2
30、 = 6 (舍)当P在CA上运动,4t7.由 SaAPR= 12x(7-t) X4 = 8,得 t=3 (舍)当t=2时,以A、P、R为顶点的三角形的面积为8.当P在OC上运动时,0t4.AP= (4-t) 2 + 32,AQ=2t,PQ=7-t当 AP =AQ 时,(4-t) 2 + 32 = 2(4-t)2,整理得,t2-8t+7=0. /t=1, t=7(舍)当 AP=PQ 时,(4-t) 2 + 32=(7-t)2,整理得,6t=24. /t=4(舍去)当 AQ=PQ 时,2 (4-t) 2=(7-t)2整理得,t2-2t-17=0 /.t=132 (舍)当P在CA上运动时,4t7.过
31、A作ADOB于D,则AD=BD=4.设直线 l 交 AC 于 E,则 QEAC, AE=RD=t-4, AP=7-t.由 coszOAC= AEAQ = ACAO,得 AQ = 53(t-4).当 AP=AQ 时,7-t = 53(t-4),解得 t = 418.当 AQ=PQ 时,AE=PE,即 AE= 12AP得 t-4= 12(7-t),解得 t =5.当AP=PQ时,过P作PFAQ于FAF= 12AQ = 12x53(t-4).在 RtAAPF 中,由 coszPAF= AFAP = 35,得AF = 35AP即 12x53(t-4)= 35x(7-t),解得 t= 22643.综上所
32、述,t=1或418或5或22643时,APQ是等腰三角形.7.1. (2011浙江金华,22,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1 )求师生何时回到学校?如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合 图象直接写出三轮车追上师生时,离学校的路程;如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回 学校,往返平均速度分别为每小时1 0km、8km.现有A、B、C、D四个植
33、树点与学校的路 程分别是13km, 15km、17km、19km,试通过计算说明哪几个植树点符合要求.解:(1)设师生返校时的函数解析式为,把(12,8)、(13,3)代入得,解得:/.,当时,t=13.6 ,师生在13.6时回到学校;3分(2)图象正确2分.由图象得,当三轮车追上师生时,离学校4km;2分(3)设符合学校要求的植树点与学校的路程为x (km),由题意得:14,解得:xV,答:A、B、C植树点符合学校的要求3分2. (2011福建福州,19,12分)如图8,在平面直角坐标系中,、均在边长为1的正方形网格格点上.(1)求线段所在直线的函数解析式,并写出当时,自变量的取值范围;(2
34、)将线段绕点逆时针旋转,得到线段,请在答题卡指定位置画出线段.若直线的函数解析式为,则随的增大而(填“增大”或“减小”).【答案】(1)设直线的函数解析式为依题意,得,解得直线的函数解析式为当时,自变量的取值范围是.(2)线段即为所求增大(2011江苏扬州,27,12分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽 中有一圆柱形块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注 入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所 示。根据图象提供的信息,解答下列问题:(1) 图2中折线ABC表示 槽中的深度与注水时间之间的关系,线段DE表
35、示槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意 义是(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果)。【答案】解:(1)乙,甲;乙槽内的圆柱形铁块的高度为14厘米。(2)设线段AB的解析式为y1=kx+b,过点(0,2)、(4,14),可得解析式为y1=3x+2;设线段DE的解析式为y2 = mx+n,过点(0,12)、(6,0),可得解析式为y2 = -2x+12;当 y1 =y2 时,3x+2 =
36、 -2x+12 .x=2。(3)(19-14)x36=4xS 甲 S 甲=45。60平方厘米。理由如下:S铁=8方程:5S乙=4S甲方程:S 乙X14=S 甲x8+2x(S 乙-8)+112解得:S甲=60 , S乙=48.(2011山东日照,22, 9分)某商业集团新进了 40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200 170乙连锁店160 150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y (元).求y关于x的函数关系式,并求出x的取值
37、范围;为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如 何设计调配方案,使总利润达到最大?【答案】(1)根据题意知,调配给甲连锁店电冰箱(70-x)台,调配给乙连锁店空调机(40-x)台,电冰箱(x-10)台,则 y=200 x+170(70-x)+160(40-x)+150(x-10),即 y=20 x+16800./.10 x40.y=20 x+168009 (10 x170, .aV30.当0VaV20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0 台,电
38、冰箱30台;当a=20时,x的取值在10 x0)当电价x=600元/千度时,该工厂消耗每千度电产生利润y=- *600+300 = 180 (元/千 度)(1)设工厂每天消耗电产生利润为w元,由题意得:W=my=m(- x+300)=m - (10m + 500)+300化简配方,得:w=-2(m-50)2 + 5000由题意,m88%x800解得:z320设甲种树苗m株,购买树苗的费用为W元,则W=24m + 30 (800 m)=6m+ 2400 6V0W随m的增大而减小,.0Vm320.当m = 320时,W有最小值W 最小值= 24000 6x320=22080 元答:当选购甲种树苗3
39、20株,乙种树苗480株时,总费用最低为22080元.(2011浙江丽水,22,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:求师生何时回到学校?如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回学校,往返平均速度分别为每小时1 0km、8km.现有A、B、C、D四个植树点与学校的路程分别是13
40、km,15km、17km、19km,试通过计算说明哪几个植树点符合要求.【解】设师生返校时的函数解析式为s=kt+b,把(12,8)、(13,3)代入得,8=12k+b, 3 = 13k+b.解得 k=-5, b=68.,.s = 5t+68,当 s=0 时,t =13.6,师生在13.6时回到学校;(2)图象见下图.由图象得,当三轮车追上师生时,离学校4km;(3)设符合学校要求的植树点与学校的路程为x(km),由题意得:x10+2+x8+814,解得:x0,:.y随x的增大而增大,.当 x =21 时,y 最大=20 x21 +3200 = 3620(9分)(2011湖南益阳,19,10分
41、)某地为了鼓励居民节约用水,决定实行两级收费制, 即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨 时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用 水18吨,交水费24元.(1 )求每吨水的政府补贴优惠价和市场调节价分别是多少?设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;小英家3月份用水24吨,她家应交水费多少元?【答案】解:设每吨水的政府补贴优惠价为元,市场调节价为元.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.;,所求函数关系式为:,.答:小英家三月份应交水费39元.(2011江苏连云港,27,
42、12分)因长期干旱,甲水库蓄水量降到了正常水位的最低值, 为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又 经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排灌 闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.求:(1)线段BC的函数表达式;乙水库供水速度和甲水库一个排灌闸的灌溉速度;乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?【答案】Q(万m3)(2011江苏宿迁,25,10分)某通讯公司推出、两种通讯收费方式供用户选择, 其中一种有月租费,另一种无月租费,
43、且两种收费方式的通讯时间x (分钟)与收费y (元) 之间的函数关系如图所示.有月租费的收费方式是(填或),月租费是元;分别求出、两种收费方式中y与自变量x之间的函数关系式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.【答案】解:(1 );30;设y有= k1x + 30, y无= k2x,由题意得,解得故所求的解析式为y有=0.1x+30; y无=0.2x.由 y 有=)无,得 0.2x = 0.1x + 30,解得x = 300;当 x = 300 时,y=60.故由图可知当通话时间在300分钟内,选择通话方式实惠;当通话时间超过300 分钟时,选择通话方式实惠;当通话时间在300
44、分钟时,选择通话方式、一样实惠. 13. (2011江苏泰州,25,10分)小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回 家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之 间的距离为S1 m,小明爸爸与家之间的距离为S2 m,图中折线OABD,线段EF分别是表 示S1、S2与t之间函数关系的图像.(1 )求S2与t之间的函数关系式:(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?【答案】解:(1)2400-96 = 25(min) .点 E、
45、F 的坐标为(0,2400)(25,0)设EF的解析式为S2 = kt+b,则有,解得,解析式为S2 = -96t+2400.(2)B、D点的坐标为(12,2400)、(22,0)。由待定系数法可得BD段的解析式为y=-240 x+5280,与S2=-96t+2400的交点坐标为(20,480)所以小明从家出发,经过20分钟在返回途中追上爸爸,这时他们距离家480m.14. (2011山东济宁,21, 8分)“五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:类别彩电冰箱洗衣机进价 2000 1600 1000售价 2200 1800
46、1100(1)若全部资金用来购买彩电和洗衣机共100台,问商家可以购买彩电和洗衣机各多少台?(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货 方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润 =售价一进价)【答案】解:(1 )设商家购买彩电x台,则购买洗衣机(100 x)台,由题意,得 2000 x + 1000 (100 x) =160000,解得 x=60.则 100 x=40 (台),所以,商家可以购买彩电60台,洗衣机40台.(2)设购买彩
47、电a台,则够买洗衣机为(100 2a)台,根据题意,得解得,因为a是整数,所以a=34,35, 36,37.因此,共有四种进货方案.设商店销售完毕后获得利润为w元.则 w= (2200 2000) a+(18001600) a+(1100 1000) (100 2a)= 200a + 10000.2000,-w随a的增大而增大,.当a=37时,W最大值=200X37 + 10000 = 17400 元所以商店获取利润最大为17400元.(2011山东潍坊,21, 10分)2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮
48、用水到 社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰 社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于与x的函数关系式,怎样 安排调运方案才能是每天的总运费最省?【解】(1 )设从甲厂调运饮用水x吨,从乙厂调运饮用水y吨,根据题意得解得.50 80,70 90,符合条件.故从甲、乙两水厂各调用了 50吨、70吨饮用水.(2)设从甲厂调运饮用水x吨,则需从乙厂调运水(120 x)吨,根据题意可得 解得.总运费,()W随x的增大而增大,故当时,
49、元.每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.(2011江苏淮安,27, 2分)小华观察钟面(题27-1图),了解到钟面上的分针每小时旋转360度,时针每小时旋转30度.他为了进一步研究钟面上分针与时针的旋转规律, 从下午2:00开始对钟面进行了一个小时的观察.为了研究方便,他将分针与时针原始位置OP (题27-2图)的夹角记为y1度,时针与原始位置OP的夹角记为y2度(夹角是指不 大于平角的角),旋转时间记为t分钟,观察结束后,他利用所得的数据绘制成图象(题27-3图),并求出了 y1与t的函数关系式:.请你完成:(1)求出题27-3图中y2与t的函数关系式;(2)直接写出A
50、、B两点的坐标,并解释这两点的实际意义;(3)若小华继续观察一小时,请你在题27-3图中补全图象.【答案】解:(1)由题27-3图可知:y2的图象经过点(0,60)和(60,90),设y2=at+b, 则,解得.题27-3图中y2与t的函数关系式为:y2= t+60.(2)A点的坐标是A(,),点A是和y2= t+60的交点;B点的坐标是B(,),点B是 和y2= t+60的交点.(3)补全图象如下:(2011江苏南京,22, 7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相 约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍, 小颖在小亮出发后50 min
51、才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min 后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.小亮行走的总路程是cm,他途中休息了min.当50 x80时,求y与x的函数关系式;当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?【答案】解:3600, 20.当时,设y与x的函数关系式为.根据题意,当时,;当,.所以,与的函数关系式为.缆车到山顶的路线长为3600十2 = 1800 (),缆车到达终点所需时间为1800-180 = 10 ().小颖到达缆车终点时,小亮行走的时间为10 + 50 = 60 ().把 代入,得 y=55x60800
52、=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1 100 ().(2011四川乐山21, 10分)某学校的复印任务原来由甲复印社承接,其收费y (元)与复印页数x (页)的关系如下表:x(页)100 200 400 1000 .y(元)40 80 160 400、若y与x满足初中学过的某一函数关系,求函数的解析式;、现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。则乙复印社每月收费y(元)与复印页数x (页)的函数关系为;、在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左 右应选择哪个复印社?【答
53、案】解:.。.由图像可知,当每月复印页数在1200左右,应选择乙复印社更合算。(2011贵州贵阳,23,10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多 得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A 种产品可得报酬1.50元,每生产一件B产品可得报酬2.80元.该厂工人可以选择A、B 两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟; 生产3件A产品和2件B产品需85分钟.(1) 小李生产1件A产品需要分钟,生产1件B产品需要分钟.(4分)(2)求小李每月的工资收入范围.(6分)【答案】解:
54、(1)设小李生产1件A产品需要m分钟,生产1件B产品需要n分钟,则 m + n = 353m + 2n = 85,解得,m = 15n = 20.(2)设小李每月生产A产品x件,则生产B产品的件数为22x8x60-1 5x20,设小李每 月的工资为y元,则y=1.50 x+2.80 x22x8x60-1 5x20+500.整理,得y=-0.6x+1987.40.22x8x60-1 5x20=0,/.x704,x的取值范围为0 x 时,即 ,则500 ,当=时,即=,则=500, 当 时,即 500,该学校印制学生手册数量小于500本时应选择乙厂合算,当印制学生手册数量大于500 本时应选择甲厂合算,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书批发商库存控制考核试卷
- 私募股权投资高端制造行业投资分析考核试卷
- 智能健身设备创新与市场分析考核试卷
- 2025科技部技术服务合同书范本
- 2025合同债务潜藏风险
- 2025年如何评估合同违约的财务影响
- 《2025聘请技术人才合同协议书》
- 2025电子产品购销合同范本模板
- 学校食堂食品安全0428
- 苏教版九年级语文(上)教案
- 共享菜园协议书5篇
- 人教版小学数学知识点总结大全
- 毕业设计(论文)-基于SolidWorks的厨余垃圾处理器设计
- 北师大版小学数学家长会发言稿范文
- GMP取样管理课件
- 安徽省普通高中2024学年学业水平合格性测试英语试题(原卷版)
- 《中国古代物理学》课件
- 《阿西莫夫短文两篇》-课件
- 培训机构教务管理岗位职责
- 各行业消防安全培训课件
- 书店承包经营合同2024版
评论
0/150
提交评论