2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选)_第1页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选)_第2页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选)_第3页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选)_第4页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(精选)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学下册第二十九章直线与圆的位置关系专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离

2、D不确定2、如图,O的半径为2,PA,PB,CD分别切O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线若P60,则CD的长为()A4B2C3D63、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D404、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定5、已知点A是O外一点,且O的半径为3,则OA可能为( )A1B2C3D46、如图,正方形ABCD的边长为8,若经过C,D两点的O与直线AB相切,则O的半径为( )A4.8B5C4D47、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点

3、,则阴影部分的面积为( )ABCD8、在ABC中,B45,AB6;AC=4;AC8;外接圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或9、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定10、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )A1BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知中,以为圆心,长度为半径画圆,则直线与的位置关系是_2、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关

4、系是_3、已知正多边形的半径与边长相等,那么正多边形的边数是_4、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_5、如图,PA,PB分别切O于点A,B,Q是优弧上一点,若P=40,则Q的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,O是的外接圆,过点C作,交O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF(1)求证:;(2)求证:AF是O的切线2、如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E(1)求证:DE是O的切线;(2)若DE8

5、,AE6,求O的半径3、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D过D作直线(1)求证:DM是的切线;(2)求证:;(3)若,求的半径4、数学课上老师提出问题:“在矩形中,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形请你根据小明所画的图形解决下列问题:(1)如图1,当与相切于点时,求的长;(2)如图2,当与相切时,求的长;若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为_5、如图,在平面直角坐标系xOy中,点A与点B的坐标分别

6、是(1,0),(7,0)(1)对于坐标平面内的一点P,给出如下定义:如果APB45,那么称点P为线段AB的“完美点”设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,C的半径是 ;y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点P在y轴负半轴上运动,则当APB的度数最大时,点P的坐标为 -参考答案-一、单选题1、B【解析】【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查

7、了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键2、A【解析】【分析】,先证明,得出,得出,过点作,在中,设,则,利用勾股定理求出,即可求解【详解】解:连接,在和,PA,PB,分别切O于点A,B,是等边三角形,又,过点作,如下图根据等腰三角形的性质,点为的中点,在中,设,则,解得:,故选:A【点睛】本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解3、D【解析】【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:

8、连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用4、C【解析】【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr5、D【解析】【分析】根据点到圆心的距离和圆的半

9、径之间的数量关系,即可判断点和圆的位置关系点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外【详解】解:点A为O外的一点,且O的半径为3,线段OA的长度3故选:D【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外6、B【解析】【分析】连接EO,延长EO交CD于F,连接DO,设半径为x构建方程即可解决问题【详解】解:设O与AB相切于点E连接EO,延长EO交CD于F,连接DO,再设O的半径为xAB切O于E,EFAB,ABCD,EFCD,OFD=90,在RtDOF中,OFD=90,OF2+DF

10、2=OD2,(8-x)2+42= x2,x=5,O的半径为5故选:B【点睛】本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题7、A【解析】【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD

11、=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键8、B【解析】【分析】作ADBC于D,求出AD的长,根据直线和圆的位置关系判断即可【详解】解:作ADBC于D,B45,AB6;,设三角形ABC1的外接圆为O,连接OA、OC1,B

12、45,O90,外接圆半径为4,;以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;当AC=8时,圆A与射线BD只有一个交点;当AC= 时,圆A与射线BD有两个交点;故选:B【点睛】本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离9、A【解析】【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案【详解】解:O的半径等于为8,圆心O到直线l的距离为为6,直线l与相离,直线l与O的公共点的个数为0,故选A【点睛】本题考查

13、的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键10、C【解析】【分析】根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可【详解】如图,过点O作OGAF,垂足为G,正六边形的边心距为,AOG=30,OG=,OA=2AG,解得GA=1,OA=2,设圆锥的半径为r,根据题意,得2r=,解得r=,故选C【点睛】本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键二、填空题1、相切【解析】【分析】过点C作CDAB于D,在RtABC中,根据勾股定理AB=cm,利用面积得出C

14、DAB=ACBC,即10CD=68,求出CD=4.8cm,根据CD=r=4.8cm,得出直线与的位置关系是相切【详解】解:过点C作CDAB于D,在RtABC中,根据勾股定理AB=cm,SABC=CDAB=ACBC,即10CD=68,解得CD=4.8cm,CD=r=4.8cm,直线与的位置关系是相切故答案为:相切【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键2、在A上【解析】【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与A的位置关系【详解】解:点A的坐标为(4,3),OA=5,半径为5,OA=r,点

15、O在A上故答案为:在A上【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr3、六【解析】【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则OAB是等边三角形,得到AOB=60,则,由此即可得到答案【详解】解:设这个正多边形的边数为n,正多边形的半径与边长相等,OA=OB=AB,OAB是等边三角形,AOB=60,正多边形的边数是六,故答案为:六【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键4、1【解析】【分析】以AB为直径作圆,当CF与圆相

16、切时,AF最大根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解【详解】解:以AB为直径作圆,因为AGB90,所以G点在圆上当CF与圆相切时,AF最大此时FAFG,BCCG设AFx,则DF4x,FC4x,在RtDFC中,利用勾股定理可得:42(4x)2(4x)2,解得x1故答案为:1【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键5、70#70度【解析】【分析】连接OA、OB,根据切线性质可得OAP=OBP=90,再根据四边形的内角和为360求得AOB,然后利用圆周角定理求解即可【详解】解:连接OA、OB,PA,PB分别切O于点A,

17、B,OAP=OBP=90,又P=40,AOB=360909040=140,Q=AOB=70,故答案为:70【点睛】本题考查切线性质、四边形内角和为360、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键三、解答题1、 (1)见解析;(2)见解析【解析】【分析】(1)由AB=AC知ABC=ACB,结合ACB=BCD,ABC=ADC得BCD=ADC,从而得证;(2)连接OA,由CAF=CFA知ACD=CAF+CFA=2CAF,结合ACB=BCD得ACD=2ACB,CAF=ACB,据此可知AFBC,从而得OAAF,从而得证(1)解:,又, ;(2)解:如图,连接OA, ,已知,AF为O的切线【点

18、睛】本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键2、 (1)见解析(2)【解析】【分析】(1)连接OD,根据等腰三角形的性质和角平分线定义证得ODADAE,可证得DOMN,根据平行线的性质和切线的判定即可证的结论;(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明ACDADE,然后根据相似三角形的性质求解AC即可求解(1)证明:连接OD,OAOD,OADODA,AD平分CAM,OADDAE,ODADAE,DOMN,DEMN,DEOD,D在O上, DE是O的切线;(2)解:AED90,DE8,AE6,AD

19、10,连接CD,AC是O的直径,ADCAED90,CADDAE,ACDADE,即,AC,O的半径是【点睛】本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键3、 (1)见解析(2)见解析(3)O的半径为5【解析】【分析】(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;(2)连接BD,由点E是ABC的内心,得到ABE=CBE,DBC=BAD,推出BED=DBE,根据等角对等边得到BD=DE;(3)根据垂径定理和勾股定理即可求出结果(1)证明:连接OD交BC于H,如图,

20、点E是ABC的内心,AD平分BAC,即BAD=CAD,ODBC,BH=CH,DMBC,ODDM,DM是O的切线;(2)证明:点E是ABC的内心,ABE=CBE,DBC=BAD,DEB=BAD+ABE=DBC+CBE=DBE,即BED=DBE,BD=DE;(3)解:设O的半径为r,连接OD,OB,如图,由(1)得ODBC,BH=CH,BC=8,BH=CH=4,DE=2,BD=DE,BD=2,在RtBHD中,BD2=BH2+HD2,(2)2=42+HD2,解得:HD=2,在RtBHO中,r2=BH2+(r-2)2,解得:r=5O的半径为5【点睛】本题考查了三角形的内心,切线的判定与性质,三角形的外

21、接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识4、 (1)BP=2(2)4.8;9.6【解析】【分析】(1)连接PT,由P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在RtBPE中,用勾股定理即得BP=2;(2)由P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;点M在P内的路径为EM,过P作PNEM于N,由EM是ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6(1)连接PT,如图:P与AD相切于点T,ATP=90,四

22、边形ABCD是矩形,A=B=90,四边形ABPT是矩形,PT=AB=4=PE,E是AB的中点,BE=AB=2,在RtBPE中,;(2)P与CD相切,PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,BP2+BE2=PE2,x2+22=(10-x)2,解得x=4.8,BP=4.8;点Q从点B出发沿射线BC移动,M是AQ的中点,点M在P内的路径为EM,过P作PNEM于N,如图:由题可知,EM是ABQ的中位线,EMBQ,BEM=90=B,PNEM,PNE=90,EM=2EN,四边形BPNE是矩形,EN=BP=4.8,EM=2EN=9.6故答案为:9.6【点睛】本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是ABQ的中位线5、 (1)(4,3)或C(4,3),(2)【解析】【分析】(1)在x轴的上方,作以AB为斜边的等腰直角三角形ACB,易知A,B,P三点在C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,3)也满足条件;当圆心为C(4,3)时,过点C作CDy轴于D,则D(0,3),CD=4,根据C的半径得C与y轴相交,设交点为,此时,在y轴的正半轴上,连接、CA,则=CA =r=3,得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论