2011-2012年高考数学 真题分类汇编 第三章函数的应用(含解析)新人教版必修1_第1页
2011-2012年高考数学 真题分类汇编 第三章函数的应用(含解析)新人教版必修1_第2页
2011-2012年高考数学 真题分类汇编 第三章函数的应用(含解析)新人教版必修1_第3页
2011-2012年高考数学 真题分类汇编 第三章函数的应用(含解析)新人教版必修1_第4页
2011-2012年高考数学 真题分类汇编 第三章函数的应用(含解析)新人教版必修1_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE PAGE 9第三章函数的应用1.(北京理)。根据统计,一名工作组装第x件某产品所用的时间(单位:分钟)为 (A,C为常数)。已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么C和A的值分别是A75,25 B75,16 C60,25 D60,16【答案】D2.(2011年湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是

2、车流密度x的一次函数()当时,求函数的表达式;()当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)解:()由题意:当;当 再由已知得 故函数的表达式为 ()依题意并由()可得 当为增函数,故当时,其最大值为6020=1200; 当时, 当且仅当,即时,等号成立。 所以,当在区间20,200上取得最大值 综上,当时,在区间0,200上取得最大值。 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。3.

3、(2011年湖南)。如图6,长方体物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v0),雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。()写出y的表达式()设0v10,0c5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少。解:(I)由题意知,E移动时单位时间内的淋雨量为,故,(II)由(I)知当时,当故(1)当时,y是关于v的减函数,故当(2)当时,在上,y是关于v的减函

4、数,在上,y是关于v的增函数,故当4.(2012年高考(上海)已知函数.(1)若,求的取值范围;(2)若是以2为周期的偶函数,且当时,有,求函数的反函数.解(1)由,得. 由得 因为,所以,. 由得 (2)当x1,2时,2-x0,1,因此 由单调性可得. 因为,所以所求反函数是, 5.(2012年高考(上海春)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.定义向量的“相伴函数”为函数的“相伴向量”为(其中为坐标原点).记平面内所有向量的“相伴函数”构成的集合为(1)设求证: (2)已知且求其“相伴向量”的模;(3)已知为圆上一点,向量的“相伴函数”在处取得最大值.当点

5、在圆上运动时,求的取值范围.证明:(1) 其“相伴向量”, (2) 函数的“相伴向量”,则 (3)的“相伴向量”,其中 当时,取得最在值,故当 , 为直线的斜率,由几何意义知,令,则 当时,函数单调递减,; 当时,函数单调递减,. 综上所述,. 6.(2012年高考(上海春)本题共有2个小题,第1小题满分7分,第2小题满分7分.某环线地铁按内、外环线同时运行,内、外环线的长均为千米(忽略内、外环线长度差异).(1)当列列车同时在内环线上运行时,要使内环线乘客最长候车时间为分钟,求内环线列车的最小平均速度;21世纪教育网(2)新调整的方案要求内环线列车平均速度为千米/小时,外环线列车平均速度为千

6、米/小时.现内、外环线共有列列车全部投入运行,要使内、外环线乘客的最长候车时间之差不超过分钟,问:内、外环线应名投入几列列车运行?解:(1)设内环线列车运行的平均速度为千米/小时,由题意可知, 所以,要使内环线乘客最长候车时间为10分钟,列车的最小平均速度是20千米/小时. (2)设内环线投入列列车运行,则外环线投入列列车运行,内、外环线乘客最长候车时间分别为分钟,则 于是有 又,所以,所以当内环线投入10列,外环线投入8列列车运行,内、外环线乘客最长候车时间之差不超过1分钟. 7.(2012年高考(江苏)如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原

7、点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.【答案】解:(1)在中,令,得. 由实际意义和题设条件知. ,当且仅当时取等号. 炮的最大射程是10千米. (2),炮弹可以击中目标等价于存在,使成立, 即关于的方程有正根. 由得. :21世纪教育网此时,(不考虑另一根). 当不超过6千米时,炮弹可以击中目标. 【考点】函数、方程和基本不等式的应用. 【解析】(1)求炮的最大射程即求与轴的横坐标,求出后应

8、用基本不等式求解. (2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解. 8(2012年高考(湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的

9、人数分组方案.【解析】 解:()设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为 :21世纪教育网由题设有 期中均为1到200之间的正整数. ()完成订单任务的时间为其定义域为 易知,为减函数,为增函数.注意到 于是 (1)当时, 此时 21世纪教育网, 由函数的单调性知,当时取得最小值,解得 .由于 . 故当时完成订单任务的时间最短,且最短时间为. (2)当时, 由于为正整数,故,此时易知为增函数,则 . 由函数的单调性知,当时取得最小值,解得.由于 此时完成订单任务的最短时间大于. (3)当时, 由于为正整数,故,此时由函数的单调性知, 当时取得最小值,解得.类似(1)的讨论.此时 完成订单任务的最短时间为,大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论