最优化知识点_第1页
最优化知识点_第2页
最优化知识点_第3页
最优化知识点_第4页
最优化知识点_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

遗传算法的优点:1. 与问题领域无关切快速随机的搜索能力。2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,robust.3. 搜索使用评价函数启发,过程简单4. 使用概率机制进行迭代,具有随机性。5. 具有可扩展性,容易与其他算法结合。遗传算法的缺点:1、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,2、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.3、没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。4、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。5、算法的并行机制的潜在能力没有得到充分的利用,这也是当前遗传算法的一个研究热点方向。用Newton法求解无约束问题牛顿法具有局部收敛性和二次收敛速度,对于凸二次函数,牛顿法一步即可达到最优解,具有二次终止性。缺点:牛顿方向d不一定是下降方向;当初始点远离最优解时,牛顿法可能不收敛;海森阵及逆阵的计算量较大;精确一维搜索的优点:得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论