相控阵雷达与芯片系统在5G通信上的应用课件_第1页
相控阵雷达与芯片系统在5G通信上的应用课件_第2页
相控阵雷达与芯片系统在5G通信上的应用课件_第3页
相控阵雷达与芯片系统在5G通信上的应用课件_第4页
相控阵雷达与芯片系统在5G通信上的应用课件_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、相控阵雷达与芯片系统在5G通信上的应用Enabling technologies for 5G2 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Enabling technologies for 5G3 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Why do we need phased array for mm-Wave system?where4 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017PGGTXTXRX24R2Friis Free SpaceEquation:

2、 PRX PTX is transmit power PRX is receive powerGTX is transmit antennagain GRX is receive antennagain is wavelengthR is dis tan ce betweentransmitter and receiverFor WLAN system,fc = 2.4GHz, BW=20MHz, Linked budget loss :20*log10(1/2.4)+10*log10(1/2e6) =-80dBFor mm-wave antenna system like 60GHz, fc

3、 = 60GHz,BW=2GHz,Linked budget loss : 20*log10(1/60)+10*log10(1/2e9)=-128dBi.e. In order for mm-wave system to achieve similar link budget as WLAN system with similar PTX, we need to rely on directional antenna point to point communication with high gain GTX and GRX.The Values and Goals of 5G Antenn

4、a5 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017术语定义:AoB天线AoB即Antenna on Board,是一种基于PCB工艺的天线射频一体化的设计。天线印制在PCB上,并将已封装的射频芯片焊 接在该PCB同平面或者不同平面上,该PCB制成板称为AoB模块。AoB一般天线规模比较大,如256单元的天线阵列。AiP天线AiP天线即Antenna in Package,天线通过PCBLTCC或其他工艺与射频裸片封装在一起的模块,或天线直接制作在裸片上并封装在一起的模块,该模块一般带有BGA焊球,可直接焊接在PCB母板上使用。通常AiP天线阵列的规模较

5、小。双极化天线双极化天线的特点是含水平与垂直或倾斜+-45度两种极化方式。其优点是同时可以传输或接收双数据流,同时实现波 束任意指向而互不干扰。对于未来的5G通信,双极化天线优于单极化天线更高传输速率、更多灵活性、更加鲁棒性等 特点,满足5G通信中回传、AP、移动终端等场景要求。瓦片式架构军用领域常用术语,主要依赖密度集成技术(HDI) 和小型化、高性能高可靠射频垂直互联。采用瓦片式架构的相控阵 雷达非常利于散热,也就大大减少了功率自耗,大大增加了天线阵列的性能。砖块式架构是早期较流行的阵列结构,元器件放置方向垂直于相控阵天线孔径平面,辐射阵元通常采用偶极子或锥形槽天线。其电路与结构设计遵循传

6、统的分系统概念,信号互联、测试与封装技术继承性好,缺点是纵向尺寸大。AESA有源相控阵技术AESA是electronically scanned array的缩写,电子扫描阵列雷达是指一类通过改变天线阵列所发出波束的合成方式,来 改变波束扫描方向的雷达。这种设计有别于机械扫描的雷达天线PPAR无源相控阵雷达PPAR是Passive Phased Array Radar的缩写,即无源电子扫描阵列雷达的一种。“无源”的意思是指天线表面的阵列单元只有改变“信号相位”的能力而没有发射信号的能力。Phased Array Simulation Process6 2017 ANSYS, Inc.July

7、31, 2017ANSYS UGM 2017Design Procedures7 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017完成天线单元原型设计完成天线单元floquet mode分析完成天线阵列设计完成波束成形与波束扫描设计射频馈线分析系统级联协同仿真Part I Antenna Unit Design8 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Antenna Unit DesignAntenna unit design use “cross slot” aperture structure, two

8、feeding structure are micro-strip and strip line for dual-polarization antenna, the antenna unit performance has RL-15dB with 9 GHz bandwidth.Two patch antenna were used for antenna unit design, the top patch will increase the BW of antenna.NameTypeMaterialDielectric FillPropertylayer 1dielectricPP1

9、layer 2MetalcopperPP1patchlayer 3dielectricPP3layer 4MetalcopperPP3patchlayer 5dielectricPP1layer 6MetalcopperPP2microstriplayer 7dielectricPP2layer 8MetalcopperPP2groundlayer 9dielectricPP2layer 10MetalcopperPP2Strip linelayer 11dielectricPP2layer 12MetalcopperPP2groundlayer 13dielectricPP1layer 14

10、MetalcopperPP1groundStackup layers for antenna and PCBantenna unit Geometrystrip line feedMicrostrip line feedGrd & aperture Geometry9 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Antenna Unit Design in free spaceAntenna element in free space, S11-15 dB,bandwidth of RL is 5864GHzIsolation level betwee

11、n 5766GHz is less than -30dBThe realized gain of unit is 7.9dB,typical patch antenna patternantenna unit realized gainReturn Loss of antenna unitisolation of antenna unit10 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Antenna Unit in ArrayAntenna unit in infinite array, S11-10 dB,Bandwidth is 6064GHz,

12、nearly 4GHzIsolation level between 5766GHz is less than -30dBThe Unit gain in infinite array is 2.8dB,the difference between co-polar & cross-polarization is 40dB.antenna unit realized gainReturn Loss of antenna unitisolation of antenna unitantenna unit co-polar vs cross-polar realized gain11 2017 A

13、NSYS, Inc.July 31, 2017ANSYS UGM 2017Part II floquet mode analysis forScan Blindness12 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Floquet mode AnalysisFloquet mode calculator can simulate main and higher wave mode while terminated other undesired mode by unit length of attenuation (dB/length)Grid si

14、zeFrequencyScan of range13 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Scan blindness Simulation(realized gain vs frequency)0,0220,0scos( )2TEG 4A TMRealized Gain calculated directly from Floquet Transmission CoefficientsRealized gain at Phi=0 frequency sweepRealized gain at Phi=90 frequency sweepFro

15、m Floquet mode simulation, the realized gain doesnt degraded when beam scan from theta 060 degree, it indicates no scan blindness were found between 5671GHzIt found the realized gain drops when beam scan from theta from 5060 deg, it indicates there is scan blindness at phi=90 (E-plane)14 2017 ANSYS,

16、 Inc.July 31, 2017ANSYS UGM 2017Animation of E filed for theta scan2017/7/3E field for Theta 0 Phi 0 (broadside)E field for Theta 0 Phi 90(broadside)E field for Theta 60 Phi 0E field for Theta 60 Phi 90From E-filed Animation, there is no higher mode(grating lobe or surface wave) were found from scan

17、 elevation angle of 060 degree115 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Part III Antenna array simulation16 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Antenna Array 256 Elements Simulation ResultsRectangular array with 16X16 elements, when array feed uniformly, peak gain is 26.8dB, HPBW is 6.37

18、 degWhen array feed uniformly, the active S parameter of center element is -24dB,the edge elements is - 24 dBHFSS simulation for 256 elements using FA-DDM profile: Simulation time is 29 hrs Total RAM 647GBantenna array simulation using FA-DDMArray 2D radiation pattern at 60GHzantenna active S parame

19、tersCenter elementEdge elements17 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Dual Polarization Antenna Array Beam Steer PerformanceRectangular array with 16X16 elements, when array feed uniformly, peak gain is 26.8dB, HPBW is 6.37 degDual-polarization array can realize any beam point and beam steer,

20、 when beam point to elevation angle of 60dB, the realized gain only drop 3.5dB (13%)Antenna Array Beam Steer at E planeTheta scanHPBW at E planePeak Gain at E planeHPBW at H planePeak Gain at H plane06.3726.876.3927.18-307.4726.977.4227.15307.4626.83-6012.3623.4712.4123.386012.3923.42Antenna Array B

21、eam Steer at H planeAntenna Array Beam Steer at E & H plane18 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Dual Polarization Antenna Array Beam Steer Performance3D radiation pattern for E-plane and H-plane beam scan, the dual polarization antenna can realized scanrange of elevation angle of -6060 degr

22、eeThere is no amplitude ripple for main lobes and side lobes, it implies dual-polarization array can support dual stream of data transmission.19 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Part IV Antenna array with PCB feeding network20 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Stackup in 3D layout

23、21 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Antenna with Feed linesTop viewSketch viewSide viewAntenna to PCB to BGA transition22 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Antenna to PCB mappingANTRF portA1,1RF10A1,2RF9A1,3RF1A1,4RF2A2,1RF12A2,2RF11A2,3RF3A2,4RF4A3,1RF13A3,2RF14A3,3RF6A3,4RF5A4,1

24、RF15A4,2RF16A4,3RF8A4,4RF7A1,1A2,1A3,1A1,2A1,3A1,4RF1RF2RF3RF4RF5 RF6RF7RF8RF9RF10RF11 RF12RF13RF14 RF15RF16A4,123 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Return Loss of Antenna from BGA24 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017isolation level between BGA portOverall isolation level -10dBWors

25、e case happen at center RF port (RF4 to RF5 & RF12 to RF13)25 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Phase difference simulation modelAntenna port (output)RF ports withinFEM (input)16 waveport for CPW line26 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Phase difference from FEM RF port to AntennaO

26、verall phase difference is with 5 degree variationThe largest phase difference occurs at RF8 & RF16 with 7 degree variation27 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Phase difference from FEM RF port to Antenna28 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Freq GHz555760626466687071cang_deg(St(P1,

27、RF1)87.9263.2726.993.31-20.26-44.09-68.63-94.33-107.66cang_deg(St(P2,RF2)91.9167.4831.227.34-16.47-40.50-65.15-90.64-103.74cang_deg(St(P3,RF3)91.0566.6130.446.65-17.08-41.09-65.83-91.65-105.02cang_deg(St(P4,RF4)92.8168.2632.098.48-14.88-38.34-62.35-87.28-100.17cang_deg(St(P5,RF5)92.7468.2032.048.46-

28、14.89-38.37-62.39-87.36-100.28cang_deg(St(P6,RF6)91.3866.9830.877.10-16.62-40.62-65.34-91.11-104.44cang_deg(St(P7,RF7)91.8567.4231.187.31-16.49-40.54-65.17-90.69-103.81cang_deg(St(P8,RF8)87.7263.0026.692.93-20.18-44.05-68.63-94.32-107.64cang_deg(St(P9,RF9)88.0063.3527.053.62-20.04-43.92-68.49-94.22-

29、107.58cang_deg(St(P10,RF10)92.0867.6431.387.52-16.29-40.32-64.95-90.49-103.61cang_deg(St(P11,RF11)91.2666.8330.686.90-16.83-40.84-65.57-91.37-104.73cang_deg(St(P12,RF12)92.7768.2432.068.46-14.90-38.35-62.33-87.23-100.10cang_deg(St(P13,RF13)92.5467.9831.808.21-15.14-38.58-62.56-87.46-100.34cang_deg(S

30、t(P14,RF14)91.4167.0130.917.15-16.57-40.60-65.35-91.18-104.55cang_deg(St(P15,RF15)91.6467.1830.927.03-16.78-40.82-65.47-91.02-104.15cang_deg(St(P16,RF16)87.9063.2127.213.40-20.17-43.93-68.08-93.97-107.39min87.7263.0026.692.93-20.26-44.09-68.63-94.33-107.66max92.8168.2632.098.48-14.88-38.34-62.33-87.

31、23-100.10average90.9466.4230.226.49-17.10-40.94-65.39-90.90-104.07delta5.095.265.395.565.385.746.307.107.56Insertion lossOverall insertion loss from RF port to Antenna port - 1.5dB29 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Gain VS realized GainTypical element gain (not incl. mismatching)Typical E

32、lement Realized gain(incl. mismatching)Typical element gain (not incl. mismatching)30 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Typical Element Realized gain(incl. mismatching)Element Gain at 70GHz at broadsideElement gain has some variation between edge elements and center element.Half power Beamw

33、idth also varies from 70100 deg at H plane and 5590 deg at E plane.Realized gain variation is about 3dB due to mismatching ortransition loss (PCB trace/vias).31 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Beam Steer Performancebroadside32 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Scan at H planScan

34、at E planBeam Steer Performance incl. PCB trace and BGAH plane beam steer performanceE plane beam steer performance33 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017Beam Steer Performance for different frequencyE plane beam steer performance atfrequency of 57.5/62/66/70GHzE plane beam steer performance

35、at frequency of 57.5/62/66/70GHz34 2017 ANSYS, Inc.July 31, 2017ANSYS UGM 2017A set of phase at RF port for array have arranged for different frequencies, in generalhigher frequency require large phase shift between adjacent elements.It shows realized gain of higher frequency such as 70GHz usually has higher gain when small scan angle set, while realized gain of 70GHz drops significantl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论