1.2独立性检验的基本思想及其初步应用_第1页
1.2独立性检验的基本思想及其初步应用_第2页
1.2独立性检验的基本思想及其初步应用_第3页
1.2独立性检验的基本思想及其初步应用_第4页
1.2独立性检验的基本思想及其初步应用_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2独立性检验的基本思想及其初步应用达标训练1在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是()A散点图B等高条形图C22列联表 D以上均不对2在等高条形图形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大()A.eq f(a,ab)与eq f(d,cd) B.eq f(c,ab)与eq f(a,cd)C.eq f(a,ab)与eq f(c,cd) D.eq f(a,ab)与eq f(c,bc)3对分类变量X与Y的随机变量K2的观测值k,说法正确的是()Ak越大,“ X与Y有关系”可信程度越小Bk越小,“ X与Y有关系”可信程度越小Ck越接近于0,“X与

2、Y无关”程度越小Dk越大,“X与Y无关”程度越大4下面是一个22列联表:y1y2总计x1a2173x222527总计b46100则表中a、b的值分别为()A94、96 B52、50C52、54 D54、525性别与身高列联表如下:高(165 cm以上)矮(165 cm以下)总计男37441女61319总计431760那么,检验随机变量K2的值约等于 ()A0.043 B0.367C22 D26.876给出列联表如下:优秀不优秀总计甲班103545乙班73845总计177390根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是()A0.4B0.5C0.75D0.85素能提高1在调查中发

3、现480名男人中有38名患有色盲,520名女人中有6名患有色盲,下列说法中正确的是()A男人、女人中患有色盲的频率分别为0.038、0.006B男人、女人患色盲的概率分别为eq f(19,240)、eq f(3,260)C男人中患色盲的比例比女人中患色盲的比例大,患色盲是与性别有关的D调查人数太少,不能说明色盲与性别有关2通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110 由K2算得,K27.8.附表:P(K2k0)0.0500.0100.001k03.8416.63510.828参照附表,得到的正确结论是()A

4、有99%以上的把握认为“爱好该项运动与性别有关”B有99%以上的把握认为“爱好该项运动与性别无关”C在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”3若由一个22列联表中的数据计算得K24.013,那么在犯错误的概率不超过0.05的前提下认为两个变量_(填“有”或“没有”)关系4(2013韶关二模)以下四个命题:在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,是简单随机抽样;样本数据:3,4,5,6,7的方差为2;对于相关系数r,|r|越接近1,则线性相关程度越强;通过随机询问110名性别不同

5、的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下列联表:男女总计走天桥402060走斑马线203050总计6050110由K2可得,K27.8,则有99%以上的把握认为“选择过马路方式与性别有关”,其中正确的命题序号是_附表P(K2k0)0.050.0100.001k03.8416.63510.8285.某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如下表:类别性别不喜欢语文喜欢语文男1310女720为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k4.844,因为k3.841,根据下表中的参考数据:P(K2k0)0.500

6、.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为_6某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:序号12345678910数学成绩95758094926567849871物理成绩90637287917158829381序号11121314151617181920数学成绩67936478779057837283物理成绩778248

7、85699161847886若单科成绩85以上(含85分),则该科成绩优秀(1)根据上表完成下面的22列联表(单位:人).数学成绩优秀数学成绩不优秀合计物理成绩优秀物理成绩不优秀合计(2)根据题(1)中表格的数据计算,能否在犯错误的概率不超过0.005的前提下认为学生的数学成绩与物理成绩之间有关系?参数数据:假设有两个分类变量X和Y,它们的值域分别为(x1,x2)和(y1,y2),其样本频数列联表(称为22列联表)为:y1y2合计x1ababx2cdcd合计acbdabcd则随机变量K2,其中nabcd为样本容量;独立检验随机变量K2的临界值参考表如下:P(K2k0)0.500.400.250

8、.150.10k00.4550.7081.3232.0722.706P(K2k0)0.050.0250.0100.0050.001k03.8415.0246.6357.87910.8287 2013年3月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:混凝土耐久性达标混凝土耐久性不达标总计使用淡化海砂25530使用未经淡化海砂151530总计402060(1)根据表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是

9、否达标有关?(2)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?参考数据:P(K2k)0.100.0500.0250.0100.001k2.7063.8415.0246.63510.8288某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510的产品为合格品,否则为不合格品左下表是甲流水线样本频数分布表,右下图是乙流水线样本的频率分布直方图产品重量/克频数(490,4956(495,5008(500,50514(505,5108(510,5154甲流水线样本频数分布表(1)根据上表数据作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率;(3)由以上统计数据完成下面22列联表,能否在犯错误的概率不超过0.1的前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论