版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教学目标理解常量、变量以及函数概念,了解初等函数和分段函数的概念。熟练掌握求函数的定义域、函数值的方法,掌握将复合函数分解成较简单函数的方法。了解哥函数、指数函数、对数函数和三角函数的基本特征和简单性质。了解极限、无穷小(大)量的有关概念,掌握求极限的常用方法。了解函数连续性概念,会求函数的间断点。理解导数概念,会求曲线的切线方程,熟练掌握导数基本公式和求导数的常用方法,会求简单的隐函数的导数。知道微分概念,会求微分。会求二阶导数。重难点函数概念、导数概念和导数的计算教学内容第一编微分学第1章函数一、试着回答下列问题:问题1:在某过程中由两个变量,其中一个量x变,另一个量y也变,那么变量y是变
2、量x的函数,此话对吗?问题2:一个函数可以由哪些要素唯一确定?问题3、函数的定义域、对应关系和值域中的任意两个因素,是否可将函数唯一确定呢?问题4:如果y是x的函数y=f(x),是否y与x之间的关系只能用一个解析式子表示?答:问题1:不对。根据函数定义,变量x变,变量y也变,并没有说明y是如何随x的变化而变化,也没有说明每给x一个值,就有唯一的y值与之对应,因此还不能说y是x的函数。问题2:任一函数,都可由其定义域D和对应关系f这两个要素确定。有的教材讲,确定函数有三个要素:定义域、对应关系和值域,实际上,只要定义域和对应关系确定了,值域也就随之确定了。问题3:不一定。例如y=sinx与y=c
3、osx,它们的定义域相同,值域也相同,但对应关系不同,它们不是同一个函数。问题4:不一定。表示函数的方法有:公式法、图示法和列表法。即使对于公式法,也不一定必须用一个解析式表示,如分段函数:x2+1,-1x2y=9-x2,2x20,a(a0,ay=cosx y=ctgx4)4)y=f(u),u= ()(x)且 u=(j)(x)的值域是 y=f(u) y=f 4 (x).其各量的关系图示如下:的定义域的子集,则 y是x的复合函数:则:y =f (x)3、初等函数初等函数是由基本初等函数经过有限次的四则运算及有限次的复合所构成的函数。注意:要掌握好将一个初等函数分解成较简单函数,其步骤是自外层向内
4、层逐层分解,切忌漏层。常见函数的定义域的基本求法求一元函数y=f(x)的定义域D,即是求使函数有意义的自变量x的变化范围。常见解析式的定义域求法有:(1)、分母不能为零;(2)、偶次根号下非负;(3)、对数式中的真数恒为正;(4)、分段函数的定义域应取各分段区间定义域的并集。对应规则f()从以上分析,对应规则f()往往表现为各种运算,已知f()求4a),只须用a取代x,代入对应规则运算即成。但应注意分段函数不同区间有不同的对应规则。(三)、函数的奇、偶性判断函数y=f(x)的奇、偶性常见有以下方法:(1)、定义法:即在对称区间上若满足f(-x)=f(x),则y=f(x)为偶函数,若满足f(-x
5、)=-f(x),则y=f(x)为奇函数,否则y=f(x)为非奇非偶函数。(2)、符合法:记偶为,记奇为,则有:乂=,+;乂:,一:乂二,+:即“同号”相乘除为,“异号”相乘除为。注意:如y=ax2,y=x,y=cosx为偶函数;33一y=x,y=x,y=x,y=1一,y=sinx,y=tanx为奇函数。x记住这些常见函数的奇、偶性,用符合法可以判断很多函数的奇、偶性。(3)、图象法:奇函数关于原点对称y轴对称来判断函数的奇、图象法即利用奇函数关于原点对称、偶函数关于(四)、经济中常用的函数偶性。需求量,p 价格一需求量,p 价格产量1、需求函数:2、供给函数:3、总成本函数:C为固定成本,qd
6、=q(p),qqs=q(p),qC(x)=Ci+G(x),C2(x)为变动成本平均成本函数:C(q)=C(q)平均收入函数:R(q)=R6)4、收入函数:R(q尸q.p(q),销售量,p价格禾1J润函数:L(q)=R(q)-C(q)三、重点、难点:重点:1、函数y=f(x)的两要素;平均利润函数:L(q)=Lq2、函数的奇偶性;3、基本初等函数;4、经济中常用的函数。难点:经济中常用的函数。四、实例分析:例1、求下列函数定义域1(1二门”(2)、f(x) =x 1 lg(2 x)(1)、分析:应同时要求分母w0,偶次根号下非负,于是解:要使函数有意义,必须使:4-x2#0 x-10,定义域D=
7、-2x。4x之11,2L”x丰2x17(2)、分析:要求分母w0且对数真数0、偶次根号下非负,于是解:要使函数有意义,必须使:x+10 x-1x11x-1”+x0=彳x-2=x-2=x-2|g(2+x)0lg(2+x)丰lg12十x。1x#1二定义域D=(-1,)对照练习1、求下列函数定义域:1.(1)、f(x)=r+x-2(2)、f(x)=Jln(4x)9x例2、求分段函数的定义域:他1卜口小片3ln(x-1),3:二x-5分析:分段函数的定义域应是各段定义域的并集解:由冈E3=-3xW3=D1=匚3,3D2=3,51二定义域D=D1+D2=L33L(3,5】=匚3,5对照练习2、求分段函数
8、的定义域:f(x)=ex-1,x-12x-8,0:x:1例3、函数f(x)的定义域是1,2,求函数f(x+1)的定义域。分析:已知f(x)的定义域为1,2,有f(x+1)的定义域要求1Wx+1W2,即0WxW1,即f(x+1)的定义域为D=0,1对照练习3、函数f(x)的定义域是2,3,求函数f(x+1)的定义域。即求出 g (t2); (2)求g (t) 2 即例4、设g(t)=t36,求g(t2),g(t)2分析:函数关系为g()=()36,(1)用t2代t,是求该函数的平方。解:g(t2)=(t2)3-6=t66g(t)2=(t3-6)2对照练习4、设f(x)=x2+5,求f(1/x),
9、ff(x)2_x1,-10且2。1)x2分析:由符号法可知:y=xa为奇函数2解:选择D,x为奇函数,a为偶函数,xa*为奇函数对照练习7、找出下列函数的偶函数A、y=x2+cosxB、y=1(104+10 x)2一sinx_x2C、y=D、y=xa(a0a11)x例8、某厂生产一种元器件,设计能力为日产100件,每日的固定成本为150元,每件的平均可变成本为10元。(1)、试求该厂此元器件的日总成本函数及平均成本函数;(2)、若每件售价14元,试写出总收入函数;(3)、试写出利润函数。解:设总成本函数为C(q),平均成本函数为A(q),总收入函数为R(q),利润函数为L(q)其中:q为生产量
10、(销售量),则有:(1)、C(q)=固定成本+变动成本=150+10q,(0WqW100)A(q)=C(q)/q=150/q+10(2)、R(q)=14q(3)、L(q)=R(q)-C(q)=14q-(150+10q)=4q150对照练习8、已知某产品固定成本为2000元,每生产一件产品,成本增加50元,则生产q件产品的平均成本为何函数?五、问题解答:对照练习答案1、(1)、2, 33, 二2、0,3、1, 2114、f (1/x) = 2 5, f xf(1)=2,f(5)无意义A、A、50B是相同函数B、C均为偶函数2000 xf第2章元函数微分学第一部分极限与连续一、试着回答下列问题:问
11、题1:什么是函数的极限过程?函数的极限过程是用什么指标来衡量的?为什么说函数极限存在与否取决于函数极限过程?问题2:设有函数y=f(x)=3x-2,当x-2时,f(x)=3x24,而f(2)=4,即f(x)在x=2的函数值f(2)=4,这两件事有什么不同?问题3:怎样直观描述函数的极限?1问题4:能否直接称y=f(x)=是无穷大量或无穷小量呢?2x答:问题1:因为微积分研究的是变量间的变化关系,也就是函数关系,而在极限中往往用自变量x的变化去刻画变化过程,去研究相应的函数f(x)的变化趋势,所以函数的极限过程是指:函数的自变量x的变化过程。而自变量x的变化过程有各种情形:xfx0,x一x0一,
12、x一x0+,x一8,x一十00,x一一OO等等。显然,函数y=f(x)的变化趋势,或存在极限或不存在极限都与极限过程有关,也就是与自变量x的各种变化过程有关,同一函数y=f(x)对不同极限过程就有不同的变化趋势。例如:y=f(x)=1/x,当x-1时,f(x)一1;当x-1/2时,f(x)一2等等。问题2:当x-2时,y=f(x)=3x2的值如下表:x1.91.991.9991.99992.00012.0012.012.13x23.73.973.9973.99974.00034.0034.034.3由此可以看出:当x-2时,(包括小于2和大于2的值),y=f(x)=3x2-4。在讨论x趋于2时
13、,y=f(x)=3x2的极限过程中,并未提及y=f(2)=4这一事实,其原因在于y=f(2)描写的是x=2时y=f(x)的值,而我们所研究的却是当x趋于2时y=f(x)的变化,这是两码事。即在本例中,两种不同的概念得到是相同的值,注意这是不应混淆的两件不同的事。3x2,x2再看g(x)=,当xB于2时,5,x=4仍然有g(x)T4即limg(x)=4,但却有g(2)=5x2这表明这两种不同的概念有时产生不同的结果。问题3:由上述两个问题我们有:定义一一如果当x取值趋近于a时,f(x)趋近于一个单一的值A或在A值上保持不变,则称A是当x趋近于a时函数y=f(x)的极限,这时可写成lmf(x)=A
14、(其中口=,口=8,支=x04=*0号等。1_问题4:显然不然。比如:右x一00时,则f(x)=00即是无劣小量;又右x02x1时,则f(x)=比即是无穷大量。可见,极限过程不相同,那么函数极限一般也不同,2x因此,所谓的无穷大量或无穷小量是相对某一极限过程而言。、主要内容归纳:(一)、函数极限注意:、以上是一个符号系统,构成极限定义,缺一不可;、弄懂定义的关键是联系函数图像,看懂在同一变化过程中自变量与因变量两个无限变化趋势;、极限过程x-。是指:XfX0,X一X0,X一X0+,X一OO,x一十00,x一一OO中的一种。2、极限存在的充要条件limf(x)=A=lim_f(x)=A=lim=
15、AXX00 x,x0穷小量与无穷大量以零我极限的变量称为无穷小量;绝对值越来越大且趋于正无穷大的变量称为无穷大量。无穷小量与无穷大量的关系是:-1rr、,一一“,limf(x)=0ulim=8(即关系互倒)x,x0f(x)=0Xx0f(x)无穷小量与有界变量之积仍为无穷小量。极限的四则运算对某一极限过程X一。,若limu=A,limv=B,则有:、lim(uv)=limulimv=AB;、lim(uv)=limulimv=AB若v=c(c是常量),有lim(cu)=climu=cA;、lim u v 推论:、_ lim u _ A lim v B limu n= (limu)(B = 0)。=
16、An, (n为自然数)、lim写u=nlimu=VA,(n为自然数)、limC=C,(C是常数)5、两个重要极限、0 = e (属“产型)(属0-型)01或呵1,o)=e注:这里教材中相应公式原来X的位置,统统被取代,它可以是任一有意义的函数,这时的公式实际比原公式应用更广。并给学生提供了想象空间,不具体给出函数形式。(二)、连续与间断点连续limf(x)=f(X。)Xx在点连续的这一定义中,一下三个条件要同时满足:、f(x)在点x-的某一邻域有定义;、f(x)在点x。有极限;、f(x)在点x。的极限等于函数值。间断点一一函数的不连续点称为间断点;初等函数在其定义区间内是连续的利用连续性求极限
17、:f(x) = f(iim x Jxox) = f(X0)三、重点、难点:0重点:1、函数极限(特别是“。”、“一”型)0两个重要极限的计算;无穷大、无穷小的概念、性质和关系。难点:点连续及间断点的判断。四、实例分析:理解并掌握下列极限的计算方法:极限的四则运算法则;sinx1V-两个重要极限lim=1,呵/1+.)=e,lim(1+x)x=e;xxxx函数的连续性。具体计算时要注意上述法则或方法成立的条件,否则会在运算出现错误。求下列极限(1)lim -x_.-(3x-1)10(1 -2x)5(3x 1)15-1 x -1 lim x P sin 2x2lim x2x)4x25x 4-x -
18、12x 1 xlim (-)xx :: x - 1解(1)当xt吧时分式的分子、分母的极限都不存在,不能用极限的除法法则, 公式(2.2.4 )可直接得到结果,即由教材中limJ二二10_5_10_5(3x -1) (1 -2x)53 (-2)515(3x 1)153152535(2)当xt 0时分式的分子、分母的极限都为 将根式有理化,即有0,且分子中含有无理根式。遇到此情形需先lim 31= limx 0 sin 2xx-0(1 x -1)( - 1 x 1)sin 2x( J x 1)=limx 01 x -1sin 2x( 1 x 1)Ilim2x2 x 0 sin 2x(. 1 x
19、1)Jim 工 lim2 x 10 sin 2x x0 , 1 x 1(3)当xt 4时分式的分子、分母的极限都为 0,且分式的分子、分母均为 式,遇到此情形需先分解因式,消去极限为零的因式再用除法法则。即x2 5x 4 lim ;x)4 x2 -x -12(x-1)(x-4)(x 3)(x-4)lim 3x 口(x 3)4-1111-1=2 24x的二次多项37(4)先进行恒等变形,在利用第,12个重要极限。即,1 -X 1 x ., x、xlim () = lim ()x : X - 1 x ,11 -=limxj 二二对照练习1、x求下列极限(1 -)x x1 x(1-)x x/、 (x
20、 -1)2(2x 1)811mA10,x f:(3x 1)10limx 132x x(3) lim -2xT x -x-6x,、2 x(4)网1一)五、问题解答:对照练习1、答案、(2)8 139、e2第二部分导数及导数应用一、试着回答下列问题:问题1:导数与导函数的关系及区别?问题2:可导、连续、极限存在三者之间的关系如何?问题3:函数的极值点、驻点和不可导点的关系如何?问题4:导数有哪些方面的应用?学习中应注意些什么?答:问题1:、导数与导函数是两个不同的概念,导数是函数在某一点附近的性质,实质就是函数对自变量在某点的变化速度;而导函数反映函数的一般规律。、导数定义的是一个常量,导函数仍是一个函数,导数是导函数f(X)在某点X0处的导函数值f(x0)o因此可先求出函数的导数,再求某点的导数值。问题2:y=f(x)在xo处有:可导一连续一limf(x)存在xxoJf(x)在点x0必有定义但反方向的箭头结论不一定成立。问题3:驻点及一阶导数不存在的点x0即不可导点(但是连续点)是极值点的可疑点,但它们不一定是极值点;可导函数的极值点必是驻点。问题4:导数应用非常广泛,而需要我们掌握的有:、利用一阶导数的几何意义求曲线在某点的切线方程;、判别函数的单调性、求函数的极值;、边际分析、求解经济应用问题的最值:成本最低、利润最大等等;、求需求弹性。求解经济应用题的极值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新进员工质量意识培训
- 信用社人力资源新工培训
- 数控车削加工技术 课件 项目二 制定数控车削工艺
- 山东省淄博市第一中学2024-2025学年高三上学期期中考试语文试卷含答案
- T-YNZYC 0079-2023 绿色药材 蜘蛛香栽培技术规程
- T-YNRZ 025-2024 瓜类蔬菜育苗技术规程
- 广西桂林市永福县2024-2025学年上学期八年级数学期中考试卷(无答案)
- 区域经济发展
- 高考历史二轮复习通史版选修四中外历史人物评说课
- 2024年山东省临沂市中考英语试题含解析
- 箱式变电站技术规范书
- 台东山煤矿联合试运转方案
- 2024年红十字应急救护知识竞赛考试题库500题(含答案)
- 技能成才强国有我课件模板
- 生化检验知识考核试卷附答案(血浆蛋白血糖)
- 2024年4月自考05424现代设计史试题
- 第六节肺源性心脏病
- 24春国家开放大学《建筑力学#》形考任务1-4参考答案
- 急诊科进修三个月总结
- 输血常见不良反应及处理
- 2024全国中小学生语文素养大赛知识素养试题库及答案
评论
0/150
提交评论