2022年最新沪教版(上海)八年级数学第二学期第二十三章概率初步专题攻克练习题(含详解)_第1页
2022年最新沪教版(上海)八年级数学第二学期第二十三章概率初步专题攻克练习题(含详解)_第2页
2022年最新沪教版(上海)八年级数学第二学期第二十三章概率初步专题攻克练习题(含详解)_第3页
2022年最新沪教版(上海)八年级数学第二学期第二十三章概率初步专题攻克练习题(含详解)_第4页
2022年最新沪教版(上海)八年级数学第二学期第二十三章概率初步专题攻克练习题(含详解)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学第二学期第二十三章概率初步专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有

2、红球( )个A12B15C18D542、下列事件中,属于必然事件的是()A射击运动员射击一次,命中10环B打开电视,正在播广告C投掷一枚普通的骰子,掷得的点数小于10D在一个只装有红球的袋中摸出白球3、下列事件是必然事件的是()A同圆中,圆周角等于圆心角的一半B投掷一枚均匀的硬币100次,正面朝上的次数为50次C参加社会实践活动的367个同学中至少有两个同学的生日是同一天D把一粒种子种在花盆中,一定会发芽4、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8下列事件中是必然事件的是(

3、)A一班抽到的序号小于6B一班抽到的序号为9C一班抽到的序号大于0D一班抽到的序号为75、下列事件中是不可能事件的是()A铁杵成针B水滴石穿C水中捞月D百步穿杨6、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球则随机摸出一个红球的概率为()ABCD7、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )ABCD8、把一副普通扑克牌中13张黑桃牌洗匀后正面向下放在桌子上从中随机抽取一张,抽出的牌上的数小于6的概率为( )ABCD9、 “翻开数学书,恰好翻到第16页”,这个事件是( )A随机事件B必然事件C不可能事件D确定事件10、乒乓球比赛以

4、11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A甲获胜的可能性比乙大B乙获胜的可能性比甲大C甲、乙获胜的可能性一样大D无法判断第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则取出红球的概率是_2、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验实验的结果如表所示:实验的稻种数n粒800800800800800发芽的稻种数m粒763757761760758发芽的

5、频率0.9540.9460.9510.9500.948在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _万粒3、在一个暗箱里放有m个大小相同、质地均匀的白球,为了估计白球的个数,再放入3个同白球大小、质地均相同,只有颜色不同的黄球,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在30%,推算m的值大约是_4、小张、小王和小李三人相约去参加“抗疫情党员志愿者进社区服务”活动,现在有A、B、C三个社区可供随机选择,他们三人恰好进入同一社区的概率是_5、现有5张除数

6、字外完全相同的卡片,上面分别写有,0,1,2这五个数,将卡片背面朝上洗匀,从中任意抽取两张,将卡片上的数字记为(1)用列表法或画树状图法列举的所有可能结果(2)若将m,n的值代入二次函数,求二次函数顶点在坐标轴上的概率三、解答题(5小题,每小题10分,共计50分)1、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂某日工作人员随机抽检20箱菌苗,结果如表:箱数625424每箱中失活菌苗株数012356(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂请估计事件A的

7、概率2、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球(1)请列举出所有可能结果;(2)求取出的两个小球标号和等于5的概率3、 “垃圾分类”进校园,锦江教育出实招锦江区编写小学生垃圾分类校本实施指导手册,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶(1)“小明投放的垃圾恰好是有害垃圾”这一事件是_(请将正确答案的序号填写在横线上)必然事件 不可能事件 随机事件(2)请用列表或画树状图的方法,求小明与小亮投

8、放的垃圾是同类垃圾的概率A有害垃圾 B厨余垃圾C可回收垃圾 D其他垃圾4、甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)5、现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小华获胜;若颜色不同,则小林获胜请用列

9、表法或画出树状图的方法说明这个游戏规则对双方是否公平,如果不公平,谁获胜的机会大-参考答案-一、单选题1、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数2、C【分析】根据事件发生的可能性大小判断即可【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个

10、只装有红球的袋中摸出白球,是不可能事件;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件3、C【分析】直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案【详解】A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;D、把一粒种子种在花盆中,一定会发芽

11、,是随机事件,不符合题意故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C【点睛】本题考察了必然事件解题的关键在于区分必然、

12、随机与不可能事件的含义5、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、D【分析】在一个不透明

13、的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,红球有:个, 则随机摸出一个红球的概率是:故选:D【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比7、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,

14、而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.8、D【分析】共有13种等可能结果,小于6的有5种,利用概率公式计算即可【详解】解:一副普通扑克牌中13张黑桃牌洗匀后正面向下放在桌子上从中随机抽取一张,共有13种等可能结果,小于6的有5种,抽出的牌上的数小于6的概率为,故选:D【点睛】本题考查了概率的求法,解题关键是熟记概率公式,准确列出所有可能9、A【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.【详解】解:“翻开数学书,恰

15、好翻到第16页”,这个事件是随机事件;故选A【点睛】本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.10、A【分析】根据事件发生的可能性即可判断【详解】甲已经得了8分,乙只得了2分,甲、乙两人水平相当甲获胜的可能性比乙大故选A【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断二、填空题1、#【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:【点睛】本题主要考查了简单概率的计算,通过列举法进行计

16、算是解决本题的关键2、0.95 1.9 【分析】(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数发芽率【详解】解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:20.95=1.9(万)故答案为:(1)0.95;(2)1.9【点睛】本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键3、7【分析】根据频率可估算出摸到黄球的概率为30%,根据概率公式列方程求出m的值即可得答案【详解】大量重复

17、试验后发现,摸到黄球的频率稳定在30%,摸到黄球的概率为30%,=30%,解得:m=7,故答案为:7【点睛】本题考查了用频率估计概率及概率公式,大量重复的试验中,频率是一个比较稳定的值,它可以估计事件的概率;熟练掌握概率公式是解题关键4、【分析】根据题意画树状图展示所有27种等可能的结果数,找出三人恰好进入同一社区的结果数,然后根据概率公式求解即可【详解】解:画树状图如图:共有27种等可能的结果数,其中三人恰好选择同一社区的结果为3种,两人恰好选择同一社区的概率故答案为:【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用

18、概率公式计算事件A或事件B的概率5、(1)见解析;(2)【分析】(1)画出树状图即可;(2)共有20种可能的结果,其中二次函数顶点在坐标轴上的结果有8种,再由概率公式求解即可【详解】(1)画树状图得共有20种可能的结果;(2)从,0,1,2这五个数中任取两数m,n,共有20种可能,其中二次函数顶点在坐标轴上(记为事件A)的有8种,所以【点睛】本题考查了用树状图法求概率以及二次函数的性质树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率=所求情况数与总情况数之比三、解答题1、(1)抽检的20箱平均每箱有2.9株

19、失活菌苗;(2)事件A的概率为【分析】(1)根据题意及表格可直接进行求解;(2)由题意知当每箱中失活菌苗株数为4010=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解【详解】解:(1)由表格得:(株);答:抽检的20箱平均每箱有2.9株失活菌苗;(2)由题意得:4010=4株,当每箱中失活菌苗株数为4株时,则需喷洒营养剂,即事件A的概率为【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键2、(1)见详解;(2).【分析】(1)根据题意通过列出相应的表格,即可得出所有可能结果;(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.【详解】解:(1)

20、由题意列表得:12341-(2,1)(3,1)(4,1)2(1,2)-(3,2)(4,2)3(1,3)(2,3)-(4,3)4(1,4)(2,4)(3,4)-所有可能的结果有12种;(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,所以取出的两个小球标号和等于5的概率.【点睛】本题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比3、(1)(2)【分析】(1)根据随机事件的相关概念可直接进行求解;(2)根据列表法可直接进行求解概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论