2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)_第1页
2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)_第2页
2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)_第3页
2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)_第4页
2022年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试题(含详细解析)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学下册第二十九章直线与圆的位置关系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF

2、上取点O,以O为圆心,线段OF的长为半径作O,O与AB,AE分别相切于点G,H,连接FG,GH则下列结论错误的是( )AB四边形EFGH是菱形CD2、若正方形的边长为4,则它的外接圆的半径为( )AB4CD23、如图,O是正五边形ABCDE的外接圆,点P是的一点,则CPD的度数是()A30B36C45D724、如图,AB是O的直径,点M在BA的延长线上,MAAO,MD与O相切于点D,BCAB交MD的延长线于点C,若O的半径为2,则BC的长是()A4BCD35、如图,、是的切线,、是切点,点在上,且,则等于( )A54B58C64D686、圆O的半径为5cm,点A到圆心O的距离OA4cm,则点A

3、与圆O的位置关系为()A点A在圆上B点A在圆内C点A在圆外D无法确定7、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)8、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接若,则的度数为( )ABCD9、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定10、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半

4、径为( )A10cmB8cmC6cmD5cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点P为O外一点,直线PO与O的两个公共点为A,B,过点P作O的切线,切点为C,连接AC,若CPO40,则CAB_度2、如图,半径为2的与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为_ 3、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若ADB12,则该正多边形的边数为 _4、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_5、已知正六边形的周长是24,则这个正六边形的半径为_ 三、解答题(5小题,每小题

5、10分,共计50分)1、如图,是的直径,是圆上两点,且有,连结,作的延长线于点(1)求证:是的切线;(2)若,求阴影部分的面积(结果保留)2、如图,中,(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件“,的周长为12cm;,”中选择一个作为条件,并求的半径3、如图,在中,BO平分,交AC于点O,以点O为圆心,OC长为半径画(1)求证:AB是的切线;(2)若,求的半径4、如图,在中,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F(1)试判断直线与的位置关系,并说明理由;(2)若,求阴影部分

6、的面积(结果保留)5、如图,已知是的直径,点在上,点在外(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中若,求证:是的切线-参考答案-一、单选题1、C【解析】【分析】由折叠可得DAE=FAE,D=AFE=90,EF=ED,再根据切线长定理得到AG=AH,GAF=HAF,进而求出GAF=HAF=DAE=30,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,C=90,FEC=60,则EF=2CE,再结合AD=DE对C

7、作出判断;由AG=AH,GAF=HAF,得出GHAO,不难判断D【详解】解:由折叠可得DAE=FAE,D=AFE=90,EF=ED.AB和AE都是O的切线,点G、H分别是切点,AG=AH,GAF=HAF,GAF=HAF=DAE=30,BAE=2DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:OFEF,OF是O的半径,EF是O的切线,HE=EF,NF=NG,ANE是等边三角形,FG/HE,FG=HE,AEF=60,四边形EFGH是平行四边形,FEC=60,又HE=EF,四边形EFGH是菱形,故B正确,不符合题意;AG=AH,GAF=HAF,GHAO,故D正确,不符合题意;在RtEFC

8、中,C=90,FEC=60,EFC=30,EF=2CE,DE=2CE.在RtADE中,AED=60,AD=DE,AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键2、C【解析】【分析】根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径【详解】解:四边形是正方形,的交点即为它的外接圆的圆心,故选C【点睛】本题考查了圆内接正多边形的性

9、质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键3、B【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OC,OD五边形ABCDE是正五边形,COD72,CPDCOD36,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、B【解析】【分析】连接OD,求出BC是O的切线,根据切线长定理得出CDBC,根据切线的性质求出ODM90,根据勾股定理求出MD,再根据勾股定理求出BC即可【详解】解:连接OD,MD切O于D,ODM90,O的半径为2,MAAO,AB是O的直径,MO2+24,M

10、B4+26,OD2,由勾股定理得:MD2,BCAB,BC切O于B,DC切O于D,CDBC,设CDCBx,在RtMBC中,由勾股定理得:MC2MB2+BC2,即(2+x)262+x2,解得:x2,即BC2,故选:B【点睛】本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键5、C【解析】【分析】连接,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可【详解】解:连接,如下图:PA、PB是的切线,A、B是切点由四边形的内角和可得:故选C【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质6、B【解析】

11、【分析】根据点与圆的位置关系的判定方法进行判断【详解】解:O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,点A在O内故选:B【点睛】本题考查了点与圆的位置关系:设O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr7、A【解析】【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心

12、的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用8、B【解析】【分析】如图:连接OB,由切线的性质可得OBA=90,再根据直角三角形两锐角互余求得COB,然后再根据圆周角定理解答即可【详解】解:如图:连接OB,是的切线,B为切点OBA=90COB=90-42=48=COB=24故选B【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键9、C【解析】【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】

13、本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr10、D【解析】【分析】作ODAB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果【详解】解:作ODAB于C,OC的延长线交圆于D,其中点为圆心,为半径,由题意可知cm,cm;AC=BC=4cm,设茶杯的杯口外沿半径为则在中,由勾股定理知解得故选D【点睛】本题考查了垂径定理,切线的性质,勾股定理的应用解题的关键在于将已知线段长度转化到一个直角三角形中求解计算二、填空题1、25或6

14、5【解析】【分析】由切线性质得出OCP=90,根据圆周角定理和等腰三角形的性质以及三角形的外角性质求得CAB或CBA的度数即可解答【详解】解:如图1,连接OC,PC是O的切线,OCPC,即OCP=90,CPO=40,POC=9040=50,OA=OC,CAB=OCA,POC=2CAB,CAB=25,如图2,CBA=25,AB是O的直径,ACB=90,CAB=90CBA=65,综上,CAB=25或65【点睛】本题考查圆周角定理、切线的性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余,熟练掌握切线性质和等腰三角形的性质是解答的关键2、#【解析】【分析】连接OB,OD,根据正多边形内

15、角和公式可求出E、A,根据切线的性质可求出OBA、ODE,从而可求出BOD的度数,根据弧长的公式即可得到结论【详解】解:连接OB,OD,五边形ABCDE是正五边形,EAAB、DE与O相切,OBAODE90,BOD(52)1809010810890144,劣弧BD的长为,故答案为:【点睛】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键3、15#十五【解析】【分析】根据圆周角定理可得正多边形的边AB所对的圆心角AOB24,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案【详解】解:如图,设正多边形的外接圆为O,连接OA,OB,ADB

16、12,AOB2ADB24,而3602415,这个正多边形为正十五边形,故答案为:15【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提4、【解析】【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,ABC=BAF=120,进而求出BAC=30,CAE=60,过B作BHAC于H,由等腰三角形的性质和含30直角三角形的性质得到AH=CH,BH=1,在RtABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积【详解】解:正六边形ABCDEF的边长为2, =120,ABC+BAC+B

17、CA=180,BAC=(180-ABC)=(180-120)=30,过B作BHAC于H,AH=CH,BH=AB=2=1,在RtABH中,AH= =,AC=2 ,同理可证,EAF=30,CAE=BAF-BAC-EAF=120-30-30=60, 图中阴影部分的面积为2,故答案为:【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键5、4【解析】【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解【详解】解:正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又正六边

18、形的周长为24,正六边形边长为246=4,正六边形的半径等于4故答案为4【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题三、解答题1、 (1)见解析(2)【解析】【分析】(1)要证明DE是O的切线,所以连接OD,只要求出ODE90即可解答;(2)连接BD,利用RtADB的面积加上弓形面积即可求出阴影部分的面积(1)证明:连接OD, ,CADBAD,OAOD,OADODA,CADODA,AEOD,E+ODE90,DEAC,E90,ODE180E90,OD是圆O的半径,DE是O的切线;(2)连接BD, AB是O的直径,ADB90,ADE60,E90,CAD90ADE3

19、0,DABCAD30,AB2BD,BD2,BA4,ODOB2,ODB是等边三角形,DOB60,ADB的面积ADDB222,OAOB,DOB的面积ADB的面积,阴影部分的面积为:ADB的面积+扇形DOB的面积DOB的面积2,阴影部分的面积为:【点睛】本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键2、 (1)见解析(2)cm【解析】【分析】(1)作ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=A

20、C-r,在RtAOE中,由AO2=AE2+OE2列出关于r的方程求解即可设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设与相切于点连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,设AC=3x,AB=5x,BC=4x,的周长为12cm,3x+4x+5x=12,x=1,AC=3,AB=5,O 与 AB 、 BC 所在直线相切BE=BC=4,AE=AB-BE=5-4=1,AO=3-r,在RtA

21、OE中,AO2=AE2+OE2,(3-r)2=12+r2,r=;,设AC=3x,AB=5x,BC=4x,4x=12,x=1,AC=3,AB=5,O 与 AB 、 BC 所在直线相切BE=BC=4,AE=AB-BE=5-4=1,AO=3-r,在RtAOE中,AO2=AE2+OE2,(3-r)2=12+r2,r=;即O的半径为cm【点睛】本题考查了作图复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理3、 (1)见解析(2)2.4【解析】【分析】(1)过O作ODAB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可(1)如图所示:过O作ODAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论