版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 (2)271图形的相似一、学习目标从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.了解成比例线段的概念,会确定线段的比.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、学习重点、难点重点:相似图形的概念与成比例线段的概念及相似多边形的主要特征与识别难点:运用相似多边形的特征进行相关的计算.三、自主学习观察图片,体会相似图形1、同学们,请观察课本P34几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)(课本图27.1-2)2、小组讨论、交流.得到
2、相似图形的概念.什么是相似图形?3、思考:如图27.1-3(课本图P35)是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?归纳:形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形或而得到的。成比例线段概念观察思考,小组讨论回答:问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?归纳:两条线段的比,就是.2、成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如a=c(即bdad=bc),我们就说这四条线段是成比例线段,简称比例线段.【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单
3、位;线段的比是一个没有单位的正数;四条线段a,b,c,d成比例,记作兰=-或a:b=c:d;bd若四条线段满足a=c,则有ad=bc.bd观察图片,体会相似图形性质(教材P36页)图27.1-4(1)中的ABC是由正ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?图27.1-4对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.【结论】:(1)相似多边形的特征:相似多边形的对应角,对应边的比.反之,如果两个多边形的对应角,对应边的比,那么这两个多边形.几何语言:在
4、/ABC和/ABC中111若ZA=ZA;ZB=ZB;ZC=ZC.iiiAB=BCABBCACAC,贝y/ABC和/ABC相似111111111(2)相似比:相似多边形的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形,因此形是一种特殊的相似形.四、例题讲解例1、如图,下面右边的四个图形中,与左边的图形相似的是()BCD例2、下列说法正确的是(A.所有的平行四边形都相似C所有的菱形都相似)B.所有的矩形都相似D.所有的正方形都相似例3、已知四边形ABCD与四边形ABCD相似,且AB:BC:CD:DA=7:8:11:14,若四边形ABCD的周长为40,
5、求四边形ABCD的各边的长.厂厂厂厂分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:五、巩固练习1.观察下列图形,指出哪些是相似图形:相似图形:和和和0毬0(J)d匚门(.4)oS(JJgU)(HJ2.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是cm,宽是cm;(大)长是cm,宽是cm;(2);(大)宽=长(3)你由上述的计算,能得到什么结论吗?3.如图所示的两个五边形相似,求未知边a、b、c、d的长度.).4.ABC与ADEF相似,且相似比是2,则DEF与厶ABC与的相似比是(3A.B.C.D.下列所给的条件中,能确定相似的有(1)两个半径不相等的
6、圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个B.4个C.5个D.6个在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?已知四边形ABCD和四边形ABCD相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形ABCD的最短边的长是6cm,那么四边形ABCD中最长的边长是多少?11111111如图,ABEFCD,CD=4,AB=9,若
7、梯形CDEF与梯形EFAB相似,求EF的长.如图,一个矩形ABCD的长AD=acm,宽AB二bcm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值.(、庁:1)AEDBfC22.1用待定系数法求二次函数的解析式教学目标:知识技能利用已知点的坐标用待定系数法求二次函数的解析式数学思考学生了解二次函数的一般式,顶点式,交点式三种形式问题解决学生了解二次函数的三种形式,如何灵活的选择解析式情感态度在求解过程中,体会解决问题的方法,培养学生思维的灵活性重难点:重点:待定系数法求二次函数的解析式难点:选择恰当的解析式求法教学准备:教师准备:制作课件,精选习
8、题学生准备:复习有关知识,预习本节课内容教学过程:一、忆(回顾旧知)1、顶点式y=a(x-h)+k(a、h、k为常数aM0)2、一般式y=ax2+bx+c(a、b、c为常数aM0)3、交点式y=a(x-x)(x-x2).(a、x?为常数aM0)【设计意图】1212使学生更加熟练一般式和顶点式,因为它是本章的重点。二、导(导入新课)已知一次函数经过点(1,3)和(-2,-12),求这个一次函数的解析式。解:设这个一次函数的解析式为y=kx+b,因为一次函数经过点(1,3)和(-2,-12),所以(k+b=3I-2k+b=12解得k=5,b=-2一次函数的解析式为y=5x-2.【设计意图】由简单到
9、复杂,由已知到未知,由旧知到新知,符合学生认知的规律。三、求(求解析式)例1已知一个二次函数的图象过点(一1,10)、(1,4)、(2,7)三点,求这个函数的解析式.解:设所求的二次函数为y=ax2+bx+c由已知得:a-b+c=1Oa+b+c=44a+2b+c=7解方程得:a=2,b=-3,c=5因此:所求二次函数是:y=2x2_3x+5本题小结:求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a,b,c的值。由已知条件(如二次函数图像上三个点的坐标)列出关于a,b,c的方程组,并求出a,b,c,就可以写出二次函数的解析式。例2已知抛物线的顶点为(一1,一3),与y轴的交点为(0,
10、5),求抛物线的解析式。解:因为抛物线的顶点为(-1,-3),所以,设所求的二次函数的解析式为y=a(x+l)2-3因为点(0,-5)在这个抛物线上,所以a-3=-5,解得a=-2故所求的抛物线解析式为y=2(x+1)2-3即:y=_2x2-4x_5顶点式y=a(x-h)2+k(a、h、k为常数,aHO).若已知抛物线的顶点坐标和抛物线上的另一个点的坐标时,通过设函数的解析式为顶点式y二a(x-h”+k.特别地,当抛物线的顶点为原点是,h=O,k=O,可设函数的解析式为y=ax2.当抛物线的对称轴为y轴时,h=0,可设函数的解析式为y=ax2+k.当抛物线的顶点在x轴上时,k=0,可设函数的解
11、析式为y=a(x-h)2.例3已知抛物线与X轴交于A(1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?解:因为抛物线与x轴的交点为A(l,0),B(1,0),所以设所求的二次函数为y=a(x+1)(x1)又点M(0,1)在抛物线上a(0+1)(0-1)=1解得:a=-1故所求的抛物线解析式为y=-(x+1)(x-1)即:y=x2+1交点式y=a(x-x.)(x-x2).(a、x】、x?为常数aH0)当抛物线与x轴有两个交点为(X,0),(x2,0)时,二次函数y=ax2+bx+c可以转化为交点式y=a(x-X)(x-X2)因此当抛物线与x轴有两个交点为(xO),(X2,O)时,可
12、设函数的解析式为y=a(x-x1)(x-x2),再把另一个点的坐标代入其中,即可解得a,求出抛物线的解析式。交点式y=a(x-X)(x-x2).X和x?分别是抛物线与x轴的两个交点的横坐标,这两个交点关于抛物线的对称轴对称,则直线就是抛物线的对称轴.【设计意图】学生体会什么情况下用用一般式,顶点式,交点式。为下一节做了铺垫,难点提前。四、(知识升华)教师点评:通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式.过程较繁杂。解法二:设抛物线为y=a(x-20)2+16根据题意可知点(0,0)在抛物线上,0=400乱+16,a=貞所求抛物线解析式为教师点评:
13、通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活。解法三:设抛物线为y=a(x-0)(x-40)根据题意可知点(20,16)在抛物线上,16=20a(20_40),也=一吕iL_i所求抛物线解析式为厂-鼻仗-40)厶_教师点评:选用两根式求解,方法灵活巧妙,过程也较简捷。【设计意图】使学生在实际问题中体会解析式的求法,让学生独立思考,并求解析式,交流结果,让快速完成的同学体验成功的喜悦,出现问题的学生自查并反思、加深印象。五、(知识小结)求二次函数解析式的一般方法:已知图象上三点或三对的对应值,通常选择一般式已知图象的顶点坐标、对称轴、最值和另一个点的坐标通常选择顶点式3已知图象与x轴
14、的两个交点的横坐标X、x2和另一个点的坐标通常选择交点式12确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式【设计意图】提炼观点、知识升华六、(链接中考)已知二次函数y=(m22)x24mx+n的图象的对称轴是直线x=2,且最高点在直线y=12x+l上,求这个二次函数的表达式.变式练习:将上例中其它条件不变,“最高点”改为“顶点”求二次函数解析式份a0和aVO两种情)【设计意图】知识拓展,提升难度,使不同的学生得到不同的发展。本节小结:我学会了;我知道了O七、(作业设计)必做题:设计求解析式(一般式、顶点式)选做题:设计求解析式(一般式、顶点式、交点式)【设计意图】分类布置
15、作业,因材施教。八、(板书设计)【设计意图】呈现本节课的重点、难点内容,帮助学生理解、消化。平移和旋转微课设计方案作者信息姓名单位名称微课信息微课名称平移和旋转选题意图让学生在数学活动中学会数学知识,可以使用更准确、更具体的数学语言区秒回生活中的数学现象。内容出处冀教版三年级数学上册第三单元适用对象小学三年级教学目标1、通过观察生活情景,让学生初步认识生活中的评议和旋转现象;能判断图形在方格纸上评议的方向和格数;能在方格纸上将图形按指定方向和格数平移。2、通过联系生活实际,体会和了解平移和选择的特点,感受数学和生活的密切联系。3、通过具体的学习和探索活动,培养学生的观察能力和空间想象能力。教学
16、用途课中讲解或活动制作方式冋多选)拍摄微课设计过程及设计意图教学过程通过”图像感知一动作把握一言语表达”掌握平移的特点。设计意图直观具体高效一、导入新课:多媒体出示图片,这些图片都是老师从生活中找来的,认真观察他们的运动方式,都是沿直线运动吗?边说边用手比划。其实,向这些沿直线的运动(手势做出平移的动作),可以叫平移。板书课题:平移引导学生总结:平移不但可以上下运动,也可以左右运动。板书:平移是物体沿直线移动。可以上下移动,也可以左右移动。让学生用动作表演平移现象,实际就是把学生放在主体地位,让他们用独创的肢体语言来表达这种运动方式的特征,从中感知平移这种运动方式。二探究新知:我们生活中有很多
17、平移现象,你能判断吗?(多媒体出示图片)这些现象是不是平移?为什么?通过观察交流,并用多媒体演示平移过程,帮助学生理解并掌握平移格数的规律。借助动态效果把抽象的知识具体化,化难为易。学生独立思考,小组交流讨论。巡视,及时了解学生的不同想法,加以指导。指名回答。问:生活中你还看到那些平移现象?和你的同桌交流。学生交流生活中见到的平移现象。指名回答,全班学生评判,总结。出示练一练,学生练习。学生交流讨论,的成共识:要知道一个图形平移了几格,只要先找点,找出两处相对应的点,然后数一数,这两个点之间平移几格,那整个图形也就平移了几格。总结。三、应用知识,拓展视野出示试一试,学生试做。订正答案。结合多媒
18、体情境图片的欣赏加深学生对所学知识的认识,使学生充分感受到数学知识和生活的密切联系。四、总结评价,布置作业。1、说说评议的特点,并举例说明。2、这堂课你最大的收获的什么?设计亮点:为了激发学生的学习热情,在弓1入新知识时,利用身边的交通方式来引入课题,用身边的平移现象让学生认识平移,掌握平移的特点。通过这部分知识的学习,学生性感性认识上升到理性认识,并可以使用更准确更具体的数学语言描述生活中的数学现象。这对于帮助学生建立空间概念,掌握变换的数学思想方法有很大的帮助,也是以后学习三角形、平行四边形、提醒的面积计算的基础。全等三角形教学设计课题12.1全等三角形微课课型新授课备课人时间课标要求理解
19、全等三角形的概念,能识别全等三角形中的对应边、对应角。教材分析本节课是人教版八年级数学上册第十一章第一节。学生已学过线段,角,相交线与平行线以及三角形相关知识,并在三角形中学习了如何通过推理证明一个结论,这些为本章学习全等三角形的知识提供了基础。本早将借助全等三角形进步培养学生的推理论证能力,本节内容是本早的第一课时,全等二角形的对应边相等,对应角相等是几何中证明线段相等,角相等的重要方法,因此本节课占有重要的地位,为后面将学习的等腰三角形、四边形、圆等内容奠定了基础。学情分析在前面已经学过三角形概念及相关知识,在生活中对图形的平移、旋转、翻折有所了解,概括全等三角形的概念并不难,能够找出全等
20、三角形的对应边、对应角是下一节学习全等三角形判定的基础,因此教学中应该加强学生探索规律的能力,学会准确找出对应边、对应角,表示全等三角形。教学目标1理解全等三角形的概念。知道全等三角形的性质,能用符号正确地表示两个三角形全等。能熟练找出两个全等三角形的对应角,对应边。通过全等三角形有关概念的学习,提高数学概念的辨析能力。通过找出全等三角形的对应元素,逐步增强识图能力。通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神。教学重难点教学重点:探究全等三角形的性质。教学难点:正确判断两个全等三角形的对应边,对应角。教学过程目标和任务师生活动设计意图创设情境导入新课欣赏图片,你能从图中找出形状和大小都相同的图形吗?它们能够完全重合吗?你能再举出一些类似的例子吗用图案激发学生探究的兴趣,体验数学来源于生活。1探索全等形的概念学生观察课件动画并思考:每组的两个图形有什么特点?学生回答,教师总结:能够完全重合的两个图形叫做全等形。师生互动探究新知2全等三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版无人驾驶技术研发公司股权转让及合作生产合同3篇
- 二零二五年网络安全违约责任承担详细合同解析3篇
- 二零二五年钢板桩租赁与施工方案优化合同3篇
- 二零二五版水电安装工程节能改造与施工合同2篇
- 二零二五版房产代持权违约责任合同范本3篇
- 二零二五年窗帘艺术中心窗帘定制合同3篇
- 二零二五年度高品质地暖系统安装与维护服务合同书2篇
- 二零二五版海洋工程建设项目担保合同3篇
- 二零二五年度酒店窗帘改造升级合同2篇
- 二零二五版服务器租赁与云存储解决方案合同3篇
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 【中小企业融资难问题探究的国内外综述5800字】
- DL∕T 2138-2020 电力专利价值评估规范
- 深圳市购物中心租金调查
- 我国无菌包装行业消费量已超千亿包-下游需求仍存扩容潜力
- 大数据管理与考核制度大全
- 大学面试后感谢信
- 2022届上海高考语文调研试测卷详解(有《畏斋记》“《江表传》曰…”译文)
- SBT11229-2021互联网旧货交易平台建设和管理规范
- 如何打造顶尖理财顾问团队
- 土壤农化分析课件
评论
0/150
提交评论