云南省昌宁2022年高三第二次模拟考试数学试卷含解析_第1页
云南省昌宁2022年高三第二次模拟考试数学试卷含解析_第2页
云南省昌宁2022年高三第二次模拟考试数学试卷含解析_第3页
云南省昌宁2022年高三第二次模拟考试数学试卷含解析_第4页
云南省昌宁2022年高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD2若的展开式中的系数之和为

2、,则实数的值为( )ABCD13设全集,集合,则( )ABCD4设,是非零向量,若对于任意的,都有成立,则ABCD5复数的模为( )AB1C2D6若复数满足,则( )ABC2D7已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为( )ABCD8已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD9已知函数的导函数为,记,N. 若,则 ( )ABCD10设f(x)是定义在R上的偶函数,且在(0,+)单调递减,则( )ABCD11已知,则的大小关系为( )ABCD12已知正四面体外接球的体积为,则这个四面体的表面积为( )ABCD二、填空题

3、:本题共4小题,每小题5分,共20分。13在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为_.14若展开式中的常数项为240,则实数的值为_.15在平面直角坐标系中,点在曲线:上,且在第四象限内已知曲线在点处的切线为,则实数的值为_16已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名

4、同学答对的概率分别是,且这六名同学答题正确与否相互之间没有影响(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望18(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)19(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集20(12分)如图,椭圆的左、右顶点分别为,上、下顶点分别为,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点(1)求椭圆的标准方程;(2)求四边形面积的取值范围21(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项

5、和.求证:.22(10分)如图,三棱柱中,平面,分别为,的中点.(1)求证: 平面;(2)若平面平面,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应

6、用,属于中档题.2B【解析】由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.3D【解析】求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于 故集合或 故集合 故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.4D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最

7、小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.5D【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解【详解】解:,复数的模为故选:D【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题6D【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.7A【解析】根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】

8、解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,此为球的半径,.故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题8B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数

9、与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.9D【解析】通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.10D【解析】利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,而,因为在上递减,即故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.11A【解析】根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【详解】由题知,则.故选:A.【点睛】本

10、题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题.12B【解析】设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有, 而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为故选:B【点睛】本题考查

11、球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。132022【解析】根据条件先求出数列的通项,利用累加法进行求解即可【详解】,下面求数列的通项,由题意知,数列是递增数列,且,的最小值为.故答案为:.【点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键综合性较强,属于难题143【解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:二项式的展开式中的常数项为,解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.15【解

12、析】先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【详解】解:依题意设切点,因为,则,又因为曲线在点处的切线为,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为: 【点睛】本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,本题属于基础题.16【解析】根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【详解】设点,则,即,当时,等号成立,.故答案为:.【点睛】本题考查了双

13、曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)分布列见解析,期望为20【解析】利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得, (2)由题意知,随机变量可能的取值为0,10,20,30.,,所以,的概率分布列为0102030所以数学期望.【点睛】本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的

14、概率是求解本题的关键;属于中档题、常考题型.18(1)证明见解析;(2).【解析】(1)将代入函数解析式可得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.(2)对函数求导,变形后讨论当时的函数单调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.【详解】(1)证明:当时代入可得,令,则,令解得,当时,所以在单调递增,当时,所以在单调递减,所以,则,即成立.(2)函数则,若时,当时,则在时单调递减

15、,所以,即当时成立;所以此时需满足的整数解即可,将不等式化简可得,令 则令解得,当时,即在内单调递减,当时,即在内单调递增,所以当时取得最小值,则,所以此时满足的整数 的最大值为;当时,在时,此时,与题意矛盾,所以不成立.因为求整数的最大值,所以时无需再讨论,综上所述,当时,整数的最大值为.【点睛】本题考查了导数在证明不等式中的应用,导数与函数单调性、极值、最值的关系和应用,构造函数法求最值,并判断函数值法符号,综合性强,属于难题.19(1);(2).【解析】(1)依据能成立问题知,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可。【详解

16、】因为不等式有实数解,所以因为,所以故。当时,所以,故当时,所以,故当时,所以,故综上,原不等式的解集为。【点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用。20(1);(2).【解析】(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)当直线斜率不存在时,易求坐标,从而得到所求面积;当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1),为等边三角形,椭圆的标准方程为(2)设四边形的面积为当直线的斜率不存在时,可得,当直线的斜率存在时,设直线的方程为,设,联立得:,面积令,则,令,则,在定义域内单调递减,综上所述:四边形面积的取值范围是【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.21(1)(2)证明见解析【解析】(1)利用求得数列的通项公式.(2)先将缩小即,由此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论