宁夏银川市普通高2022年高三(最后冲刺)数学试卷含解析_第1页
宁夏银川市普通高2022年高三(最后冲刺)数学试卷含解析_第2页
宁夏银川市普通高2022年高三(最后冲刺)数学试卷含解析_第3页
宁夏银川市普通高2022年高三(最后冲刺)数学试卷含解析_第4页
宁夏银川市普通高2022年高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数()的图像可以是( )ABCD2设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个3在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示将弯管形状近似地看成是圆弧

2、,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是( )ABCD4宁波古圣王阳明的传习录专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )ABCD5网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A1BC3D46已知函数,若,使得,则实数的取值范围是( )ABCD7定义运算,则函数的图象是( )ABCD8双曲线y2=1的渐近线方程是( )Ax

3、2y=0B2xy=0C4xy=0Dx4y=09的图象如图所示,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( )ABCD10已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD111已知集合,则集合真子集的个数为( )A3B4C7D812要得到函数的图象,只需将函数的图象A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度二、填空题:本题共4小题,每小题5分,共20分。13设是公差不为0的等差数列的前n项和,且,则_.14在面积为的中,若点是的中点,点满足,则的最大值是_.

4、15在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.16若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点(1)若,求直线与轴的交点坐标;(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上18(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.19(12分)已知椭圆的离心率为,且过点.(1)求椭圆

5、C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.20(12分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上.(1)求椭圆的标准方程;(2)如图,为直线上任一点,过点椭圆上点处的切线为,切点分别,直线与直线,分别交于,两点,点,的纵坐标分别为,求的值.21(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.22(10

6、分)在,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且, ,(1)求数列的通项公式;(2)设,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.2A【解析】试题分析:,所以,即

7、集合中共有3个元素,故选A考点:集合的运算3B【解析】为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.4B【解析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事

8、件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.5A【解析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.6C

9、【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C考点:函数的综合问题【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键7A【解析】由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.8A【解析】试题分析

10、:渐近线方程是y2=1,整理后就得到双曲线的渐近线解:双曲线其渐近线方程是y2=1整理得x2y=1故选A点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程属于基础题9B【解析】根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得,函数的最小正周期为,则,取,则,可得,当时,.故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.10B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面

11、ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应

12、用.11C【解析】解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.12D【解析】先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。1318【解析】将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【详解】因为,所以.故填:.【点睛】本题

13、考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.14【解析】由任意三角形面积公式与构建关系表示|AB|AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由ABC的面积为得|AB|AC|sinBAC=,所以|AB|AC|sinBAC=,又,即|AB|AC|cosBAC=,由与的平方和得:|AB|AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.15【解析】根据题意作出图象,利用三垂线定理

14、找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为二面角的平面角的补角,即有.易证面,而三角形为等边三角形, 为的中点.设, .故三棱锥的体积为当且仅当时,即.三点共线.设三棱锥的外接球的球心为,半径为.过点作于,四边形为矩形.则,在中,解得.三棱锥的外接球的表面积为.故答案为:【点睛】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何

15、性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.16【解析】注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.【详解】由已知,又,故,所以的最小值为.故答案为:.【点睛】本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)见解析【解析】(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程代入验证

16、即可注意分和说明【详解】解:本题考查直线与椭圆的位置关系的综合,(1)由题知,则因为,所以,则直线的方程为,联立,可得故则,直线的方程为令,得,故直线与轴的交点坐标为(2)证明:因为,所以设点,则设当时,设,则,此时直线与轴垂直,其直线方程为,直线的方程为,即在方程中,令,得,得交点为,显然在椭圆上同理当时,交点也在椭圆上当时,可设直线的方程为,即直线的方程为,联立方程,消去得,化简并解得将代入中,化简得所以两直线的交点为因为,又因为,所以,则,所以点在椭圆上综上所述,直线与直线的交点在椭圆上【点睛】本题考查直线与椭圆相交问题,解题方法是解析几何的基本方程,求出直线方程,解方程组求出交点坐标,

17、代入曲线方程验证点在曲线本题考查了学生的运算求解能力18(1)(2)证明见解析【解析】(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点. 再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,至少有一个零点. ,若,则,在上单调递增,有唯一零点.若令,得有两个极值点,.在上单调递增,在上单调递减,在上单调递增.极大值为.,又,在(0,16)上单调递增,有唯一零点.综

18、上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.19(1)(2)点在以为直径的圆上【解析】(1)根据题意列出关于,的方程组,解出,的值,即可得到椭圆的标准方程;(2)设点,则,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上【详解】(1)由题意可知,解得,椭圆的标准方程为:.(2)设点,则,直线的斜率为,直线的方程为:,令得,点的坐标为,点的坐标为,又点,在椭圆上,点

19、在以为直径的圆上【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档题20(1);(2).【解析】(1)因为点在椭圆上,所以,然后,利用,得出,进而求解即可(2)设点的坐标为,直线的方程为,直线的方程为,分别联立方程:和,利用韦达定理,再利用,即可求出的值【详解】(1)由椭圆的长半轴长为,得.因为点在椭圆上,所以.又因为,所以,所以(舍)或.故椭圆的标准方程为.(2)设点的坐标为,直线的方程为,直线的方程为.据得.据题意,得,得,同理,得,所以.又可求,得,所以.【点睛】本题考查椭圆标准方程的求解以及联立方程求定值的问题,联立方程求定值的关键在于利用韦达定理进行消参,属于中档题21(1)(2)【解析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论