




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十二章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140B
2、155C145D1352、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD3、下列说法正确的有( )有一组邻边相等的矩形是正方形 对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形 对角线相等的菱形是正方形A1个B2个C3个D4个4、菱形ABCD的周长是8cm,ABC60,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm5、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形6、如图,把矩形纸片沿对角
3、线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等7、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D98、下列四个命题中,正确的是( )A对角线相等的四边形是矩形B有一个角是直角的四边形是矩形C两组对边分别相等的四边形是矩形D四个角都相等的四边形是矩形9、正八边形的外角和为( )ABCD10、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相
4、等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个矩形较短的边长为5cm,两条对角线的夹角为60,则这个矩形的对角线长是_cm2、若一个多边形的内角和是外角和的倍,则它的边数是_3、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB8cm,AD5cm,那么图中阴影部分面积为_cm24、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形5、如图,菱形OABC在直角坐标系中,点A的坐标为,对角线,反比例函数经过点C则k的值为_三、解答题(5小题,每小题10分,共计50分)1、在菱形ABCD中,ABC
5、60,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE若AB2,BE2,请直接写出APE的面积2、在平面直角坐标系xOy中,点A(x,m)在第四象限,A,B两点关于x轴对称,x+n(n为常数),点C在x轴正半轴上,(1)如图1
6、,连接AB,直接写出AB的长为 ;(2)延长AC至D,使CDAC,连接BD如图2,若OAAC,求线段OC与线段BD的关系;如图3,若OCAC,连接OD点P为线段OD上一点,且PBD45,求点P的横坐标3、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时,(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积4、如图,在平行四边形中,点在上由点向点出发,速度为每秒;点在边上,同时
7、由点向点运动,速度为每秒当点运动到点时,点,同时停止运动连接,设运动时间为秒(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由5、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容结合图,写出完整的证明过程(应用)如图,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 (拓展)如图,直线
8、EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,C=45,则五边形ABFEG的周长为 -参考答案-一、单选题1、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70,CDF=15,ADF=55,四边形ABCD是平行四边形,ABC=ADC=70,ADBC,BFD=125,AEBC,BAE=20,由旋转变换的性质可知,BFG=BAE=20,DFG=DFB+BFG=145,故选:C【点睛】本题考查的是平行四边形的性质、旋转
9、变换的性质,掌握旋转前、后的图形全等是解题的关键2、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键3、D【分析】根据 正方形的判定定理依次分析判断【详解】解:有一组邻边相等的矩形是正方形,故该项正确; 对角
10、线互相垂直的矩形是正方形,故该项正确;有一个角是直角的菱形是正方形,故该项正确; 对角线相等的菱形是正方形,故该项正确;故选:D【点睛】此题考查了正方形的判定定理,正确掌握正方形与矩形菱形的特殊关系及对应添加的条件证得正方形是解题的关键4、B【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得
11、:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法5、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键6、D【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是
12、成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90;CBD=FBD,又四边形ABCD为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答7、C【分析】根据直角三角
13、形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键8、D【分析】根据矩形的判定定理判断即可【详解】解:A. 对角线相等的平行四边形是矩形,原选项说法错误,不符合题意;B. 有一个角是直角的平行四边形是矩形,原选项说法错误,不符合题意;C. 两组对边分别相等的四边形是平行四边形,原选项说法错误
14、,不符合题意;D. 四个角都相等的四边形是矩形,原选项说法正确,符合题意;故选:D【点睛】本题考查矩形的判定定理,熟记矩形的判定定理是解题关键9、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键10、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等
15、,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360二、填空题1、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.2、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【
16、点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是3603、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积【详解】解:四边形为矩形, , 在与中, 阴影部分的面积最后转化为了的面积,中, 平分, 阴影部分的面积:,故答案为:10【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键4、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边
17、形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键5、3【分析】根据菱形的性质可知菱形的四条边都相等,点的坐标为,对角线,反比例函数经过点,可设点的坐标为,从而可以表示出点的坐标,然后列出相应的方程组,即可得、的值,从而可以得到的值【详解】四边形是菱形,设点的坐标为,点的坐标为,对角线,点的坐标为,,,解得,反比例函数经过点,点的坐标为,故答案为:3【点睛】本题考查反比例函数图象上点的坐标特征、菱形的性质,解题的关键是根据数形结合的思想
18、找到各边之间的关系,与点的坐标的关系三、解答题1、(1)BPCE,CEBC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明BAPCAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明BAPCAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由BCE90,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论【详解】解:(1)如图1,连接AC,延长CE交AD于点H,四边形ABCD是菱形,ABBC,ABC60,ABC是等边三角形,ABAC,BA
19、C60;APE是等边三角形,APAE,PAE60,BAPCAE60PAC,BAPCAE(SAS),BPCE;四边形ABCD是菱形,ABPABC30,ABPACE30,ACB60,BCE60+3090,CEBC;故答案为:BPCE,CEBC;(2)(1)中的结论:BPCE,CEAD 仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,菱形ABCD,ABC60,ABC和ACD都是等边三角形,ABAC,BAD120,BAP120+DAP,APE是等边三角形,APAE,PAE60,CAE60+60+DAP120+DAP,BAPCAE,ABPACE(SAS),BPCE,ACEABD30,DCE3
20、0,ADC60,DCE+ADC90,CHD90,CEAD;(1)中的结论:BPCE,CEAD 仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EFAP于F,四边形ABCD是菱形,ACBD BD平分ABC,ABC60,AB2,ABO30,AOAB,OBAO3,BD6,由(2)知CEAD,ADBC,CEBC,BE2,BCAB2,CE8,由(2)知BPCE8,DP2,OP5,AP2,APE是等边三角形,SAEP(2)27,如图4中,当点P在DB的延长线上时,同法可得AP2,SAEP(2)231,【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的
21、性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题2、(1)6;(2)OCBD,OCBD;3【分析】(1)利用二次根式的被开方数是非负数,求出m3,判断出A,B两点坐标,可得结论;(2)结论:OCBD,OCBD连接AB交x轴于点T利用等腰三角形的三线合一的性质得出OC2CT,利用三角形中位线定理得出CTBD,BD2CT,由此即可得;连接AB交OC于点T,过点P作PHOC于H证明OTBPHO(AAS),推出BTOH3,即可得出结论【详解】解:(1)由题意,m3,xn,A(n,3),A,B关
22、于x轴对称,B(n,3),AB3(3)6,故答案为:6;(2)结论:OCBD,OCBD理由:如图,连接AB交x轴于点TA,B关于x轴对称,ABOC,ATTB,AOAC,OTCT(等腰三角形的三线合一),OC2CT,ACCD,ATTB,CTBD,BD2CT,OCBD,OCBD;如图,连接AB交OC于点T,过点作于点,ACOCCD,COAOAC,CODCDO,2OAC+2CDO180,OAC+CDO90,AOD90,A,B关于x轴对称,OTAB,OAOB,OBTOAT, COD+AOC90,AOC+OAT90,OATCOD,OBTCOD,即OBTPOH,BDOC,PDBPOHOBT,ABD90,P
23、BD45,ABP45,OBPOBT+ABPOBT+45,OPBPBD+PDB45+PDB,OBPOPB, OBPO,在和中,OTBPHO(AAS),BTOH3,故点P的横坐标为3【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键3、(1)CDEF,CD=EF;(2)结论成立,理由见解析;(3)1或2【分析】(1)如图所示,连接CE,延长BD交CE于H,先证明BADCAE得到BD=CE,ABD=ACE,然后证明四边形CDFE是平行四边形,即可得到CDEF,CD=EF;(2)连接CE,延长BD交CE于点H,交
24、AC于点G, 类似(1)进行证明即可;(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可【详解】解:(1)CDEF ,CD=EF,理由如下:如图所示,连接CE,延长BD交CE于H,ABC和ADE均为等腰直角三角形,BACDAE90,AB=AC,AE=AD,BADCAE(SAS),BD=CE,ABD=ACE,ABD+ADB=90,ADB=CDH,ACE+CDH=90,BHC=90,BHE=90,由旋转的性质可得BDF=90,BD=FD,BDF=BHE=90,BD=CE,DFCE,四边形CDFE是平行四边形,CDEF,CD=EF;(2)结论成立,理由如下:连接CE,延长
25、BD交CE于点H,交AC于点G,BAC=DAE=90,DAB=EAC=90-DAC,AB=AC ,AD=AE,ADBAEC(SAS),BD=CE ,DBA=ECA,BGA+DBA=90,BGA=CGH ,DBA=ECA,CGH+ECA=90,DHE=90,由旋转的性质可得BDF=90,BD=FD,DFCE,DF=BD,DFCE,CD=CE, 四边形DCEF是平行四边形 CDEF,CD=EF;(3)如图3所示,当DAC=45时,设AC与DE交于H,ADE=90,EAC=ADC=45,又AD=AE,;,由(2)可知四边形DFEC是平行四边形,;如图4所示,当DAC=45时,DAC=ADE=45,A
26、CDE,同理可证四边形CEFD是平行四边形,综上所述,DEF的面积为1或2【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够正确作出辅助线构造平行四边形求解4、(1);(2)yS四边形ABPQ2t32(0t8);(3)t8,;(4)当t4或或时,为等腰三角形,理由见解析【分析】(1)利用平行四边形的对边相等AQBP建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQPQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等
27、建立方程求解即可得出结论【详解】解:(1)在平行四边形中,由运动知,AQ16t,BP2t,四边形ABPQ为平行四边形,AQBP,16t2tt,即:ts时,四边形ABPQ是平行四边形;(2)过点A作AEBC于E,如图,在RtABE中,B30,AB8,AE4,由运动知,BP2t,DQt,四边形ABCD是平行四边形,ADBC16,AQ16t,yS四边形ABPQ(BPAQ)AE(2t16t)42t32(0t8);(3)由(2)知,AE4,BC16,S四边形ABCD16464,由(2)知,yS四边形ABPQ2t32(0t8),四边形ABPQ的面积是四边形ABCD的面积的四分之三2t3264,t8;如图,当t8时,点P和点C重合,DQ8,CDAB8,DPDQ,DQCDPQ,DB30,DQP75;(4)当ABBP时,BP8,即2t8,t4;当APBP时,如图,B30,过P作PM垂直于AB,垂足为点M,BM4,解得:BP,2t,t当ABAP时,同(2)的方法得,BP,2t,t所以,当t4或 或时,ABP为等腰三角形【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQBP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国星级酒店前台管理系统市场调查研究报告
- 2025至2030年中国无烟无卤电缆行业投资前景及策略咨询报告
- 磁芯检测培训课件
- 2025至2030年中国方柱家具支撑脚行业发展研究报告
- 2025至2030年中国斯太尔前轴数据监测研究报告
- 2025至2030年中国数码相机镜头环行业投资前景及策略咨询报告
- 中国化妆品市场竞争状况及占有率调查报告2025-2030年
- 职业高中课堂规范
- 工匠传承:孩子教育重点
- 花卉美术课课件
- GB/T 13441.4-2012机械振动与冲击人体暴露于全身振动的评价第4部分:振动和旋转运动对固定导轨运输系统中的乘客及乘务员舒适影响的评价指南
- 教科版科学五年级下册全册全套课件【最新版】
- 云南省文山壮族苗族自治州各县区乡镇行政村村庄村名居民村民委员会明细
- 中绿的制度课
- 质量目标管理表
- 机械原理课程设计-抽油机机械系统设计说明书
- 医疗护理品管圈QCC成果汇报之提高住院病人健康宣教的知晓率(问题解决型)
- DBJ41T 074-2013 高压细水雾灭火系统设计、施工及验收规范
- Q∕SY 05262-2019 机械清管器技术条件
- DBJ51 014-2021 四川省建筑地基基础检测技术规程
- 环境监测课件:第3章 空气和废气监测2
评论
0/150
提交评论