八年级数学的教学的教案_第1页
八年级数学的教学的教案_第2页
八年级数学的教学的教案_第3页
八年级数学的教学的教案_第4页
八年级数学的教学的教案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Word - 11 -八年级数学的教学的教案 数学是传统三大科目之一,在整个科目中分数占据着较大的比重;从培育力量方面,数学也发挥着重要作用,通过数学的学习能够培育同学规律思维力量、抽象力量、空间力量等。今日在这给大家整理了一些八班级数学的教学教案,我们一起来看看吧! 八班级数学的教学教案1 教学目标 1、 理解并把握等腰三角形的判定定理及推论 2、 能利用其性质与判定证明线段或角的相等关系. 教学重点: 等腰三角形的判定定理及推论的运用 教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系. 教学过程: 一、复习等腰三角形的性质 二、新授: I提出问题,

2、创设情境 出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60方向走一段距离到C处时,测得ACB为30,这时,地质专家测得AC的长度就可知河流宽度. 同学们很想知道,这样估测河流宽度的依据是什么?带着这个问题,引导同学学习“等腰三角形的判定”. II引入新课 1.由性质定理的题设和结论的变化,引出讨论的内容在ABC中,苦B=C,则AB= AC吗? 作一个两个角相等的三角形,然后观看两等角所对的边有什么关系? 2.引导同学依据图形,写出已知、求证. 3、小结,通过论证,这个命题是真命题,即“等腰三角形的

3、判定定理”(板书定理名称). 强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”. 4.引导同学说出引例中地质专家的测量方法的依据. 八班级数学的教学教案2 教学目标: 1.经受运用拼图的方法说明勾股定理是正确的过程,在数学活动中进展同学的探究意识和合作沟通的习惯。 2.把握勾股定理和他的简洁应用 重点难点: 重点:能娴熟运用拼图的方法证明勾股定理 难点:用面积证勾股定理 教学过程 七、创设问题的情境,激发同学的学习热忱,导入课题 我们已经通过数格子的方法发觉了直角三角形三边的关系,毕竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是

4、今日所要讨论的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学沟通。在同学操作的过程中,老师展现投影1(书中p7图17)接着提问:大正方形的面积可表示为什么? (同学们回答有这几种可能:(1)(2) 在同学沟通形成共识之后,老师把这两种表示大正方形面积的式子用等号连接起来。 =请同学们对上面的式子进行化简,得到:即= 这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。 八、讲例 1.飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男

5、孩头顶5000米,飞机每时飞行多少千米? 分析:依据题意:可以先画出符合题意的图形。如右图,图中ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里肯定要留意单位的换算。 解:由勾股定理得 即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为: 答:飞机每个小时飞行540千米。 九、议一议 展现投影2(书中的图19) 观看上图,应用数格子的方法推断图中的三角形的三边长是否满意 同学在谈论沟通形成共识之后,老师总结。 勾股定理存在于

6、直角三角形中,不是直角三角形就不能使用勾股定理。 十、作业 1、1、课文P111.21、2 2、选用作业。 八班级数学的教学教案3 一、教学目标 1.了解二次根式的意义; 2. 把握用简洁的一元一次不等式解决二次根式中字母的取值问题; 3. 把握二次根式的性质 和 ,并能敏捷应用; 4.通过二次根式的计算培育同学的规律思维力量; 5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美. 二、教学重点和难点 重点:(1)二次根的意义;(2)二次根式中字母的取值范围. 难点:确定二次根式中字母的取值范围. 三、教学方法 启发式、讲练结合. 四、教学过程 (一)复习提问 1.什么叫平方根、算术

7、平方根? 2.说出下列各式的意义,并计算 (二)引入新课 新课:二次根式 定义: 式子 叫做二次根式. 对于 请同学们争论论应留意的问题,引导同学总结: (1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢? 若根式中含有字母必需保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分. (2) 是二次根式,而 ,提问同学:2是二次根式吗?明显不是,因此二次根式指的是某种式子的“外在形态”.请同学举出几个二次根式的例子,并说明为什么是二次根式.下面例题依据二次根式定义,由同学分析、回答. 例1 当a为实数时,下列各式中哪些是二次根式? 例2 x是怎样的实数时,式子 在实数范围有意

8、义? 解:略. 说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义. 例3 当字母取何值时,下列各式为二次根式: (1) (2) (3) (4) 分析:由二次根式的定义 ,被开方数必需是非负数,把问题转化为解不等式. 解:(1)a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式. (2)-3x0,x0,即x0时, 是二次根式. (3) ,且x0,x0,当x0时, 是二次根式. (4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式. 例4 下列各式是二次根式,求式子中的字母所满意的条件: 分析:这个例题依据二次根式定义,让同学分析式子中字母应

9、满意的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零. 解:(1)由2a+30,得 . (2)由 ,得3a-10,解得 . (3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数. (4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满意的条件是:b=0. 八班级数学的教学教案4 教学目标: 情意目标:培育同学团结协作的精神,体验探究胜利的乐趣。 力量目标:能利用等腰梯形的性质解简洁的几何计算、证明题;培育同学探究问题、自主

10、学习的力量。 认知目标:了解梯形的概念及其分类;把握等腰梯形的性质。 教学重点、难点 重点:等腰梯形性质的探究; 难点:梯形中帮助线的添加。 教学课件:PowerPoint演示文稿 教学方法:启发法、 学习方法:争论法、合作法、练习法 教学过程: (一)导入 1、出示图片,说出每辆汽车车窗外形(投影) 2、板书课题:5梯形 3、练习:下列图形中哪些图形是梯形?(投影) 4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。 5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影) 6、特别梯形的.分类:(投影) (二)等腰梯形性质的探究 【探究性质一】 思索:在等腰梯形中,假如

11、将一腰AB沿AD的方向平移到DE的位置,那么所得的DEC是怎样的三角形?(投影) 猜想:由此你能得到等腰梯形的内角有什么样的性质?(同学操作、争论、作答) 如图,等腰梯形ABCD中,ADBC,AB=CD。求证:B=C 想一想:等腰梯形ABCD中,A与D是否相等?为什么? 等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。 【操练】 (1)如图,等腰梯形ABCD中,ADBC,AB=CD,B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影) (2)如图,在等腰梯形ABCD中,ADBC,AB=CD,DEAC,交BC的延长线于点E,CA平分BCD,求证:B=2E.(投影) 【探究性质二

12、】 假如连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(同学操作、争论、作答) 如上图,等腰梯形ABCD中,ADBC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影) 等腰梯形性质:等腰梯形的两条对角线相等。 【探究性质三】 问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(同学操作、作答) 问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点争论) 等腰梯形性质:同以底上的两个内角相等,对角线相等 (三)质疑反思、小结 让同学回顾本课教学内容,并提出尚存问题; 同学小结,老师视详细状况赐予提示:性质(从边、角、对角线、对称性等角度总结)

13、、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中帮助线的添加方法。 八班级数学的教学教案5 一、教学目标 1.理解分式的基本性质. 2.会用分式的基本性质将分式变形. 二、重点、难点 1.重点:理解分式的基本性质. 2.难点:敏捷应用分式的基本性质将分式变形. 3.认知难点与突破方法 教学难点是敏捷应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使同学在理解的基础上敏捷地将分式变形. 三、例、习题的意图分析 1.P7的例2是使同学观看等式左右的已知的分母(或分子),乘以或除

14、以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变. 2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得留意的是:约分是要找准分子和分母的公因式,最终的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母. 老师要讲清方法,还要准时地订正同学做题时消失的错误,使同学在做提示加深对相应概念及方法的理解. 3.P11习题16.1的第5题是:不转变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,转变其中任何两个,分式的值不变. “不转变分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入 1.请同学们考虑:与相等吗?与相等吗?为什么? 2.说出与之间变形的过程,与之间变形的过程,并说出变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论