版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、注:本文已经发表于中国数学会.北京师大数学通报2001.10对数学美育的初步认识与实践许兴华 (广西南宁三中 530021)数学家克莱因说:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。”的确,数学是一门独特的科学,数学中包括着许许多多美的因素,教师要使数学课堂教学得到预期的良好效果,让学生学得津津有味,那么,充分挖掘数学中的美育因素,用春风化雨般的艺术美使学生受到潜移默化,甚至使学生热爱数学达到如痴如醉、废寝忘食的程度,让学生在轻松愉快的氛围美之中获取知识,在精湛艺
2、术般的课堂布局中得到美的艺术享受,所有这些蕴含于数学中的美学因素,就起着举足轻重的重要作用。笔者在平时的教学中,曾进行数学美育的教学探索,试图通过数学美育培养学生的学习兴趣,从而充分地调动学生学习的积极性与主动性,促进数学教学的成功,取得了一定的效果。下面是笔者在数学美育中的初步认识与体会。1 利用数学的形式美,培养学生的学习兴趣众所周知,如果注意挖掘,数学中处处存在着形式美。注意在教学中提练美,向学生适时地表现美,让学生艺术地感受美,应当是教师的一项基本功。例如,让学生展示以下各题中的形式美:1)证明恒等式2)在学习二项式定理时,向学生展示“杨辉三角”的形式美。先让学生充分地研究:到底“杨辉
3、三角”形式美的实质是什么?经过大家开动脑筋,认真讨论,结果发现美的实质恰好是公式,这样,学生自己尝试到了成功的喜悦,大家都无比兴奋,学习数学的情绪空前高涨。3)由二项式定理,可以推出:当a、bZ时,(其中m是整数),由此可以证明一些整除问题。例如,求证:能被7整除;能被7整除。这两个式子是很美的,因为4444+3333=5555+2222=7777均能被7整除)。4)特殊角的三角函数值具有形式美:角函数304560sincostg因为表中三行的分子可分别记为:“一二三,三二一,三九二十七。”5)学习数列时,启发学生推导优美的式子: 1+2+n=; ;。6)容易推导,复数a+bi(a、bR)的平
4、方根是:i,其中括号内的“”号与b的符号一致。有的学生觉得此公式难记,其实若记为:i,则更能体现其形式的优美,又便于记忆。7)在学习三角时,有以下问题:设A+B+C=,求证:tgA+tgB+tgC=tgAtgBtgC.设A+B+C=,且tgA、tgB、tgC均不等于1,求证:tg2A+tg2B+tg2C=tg2Atg2Btg2C.设a+b+c=abc,a1,b1,c1求证: 设arctg a+arctg b+arctg c=,求证:以上四个问题结构巧妙,形式优美,彼此之间“似曾相识”,因为它们之间有着紧密的本质联系。在解决了数学课本上的问题以后,教师接着提出以上三个问题让学生思考:问题将对我们
5、解决其余的三个问题有什么方法上的启示吗?学生通过对比联想,尝试探索,终于发现它们之间不仅仅是形式的优美,而且有着本质上的美好联系,从而用类似的方法去解决了类似的问题这就是多样化的问题在数学上得到完美的统一的结果。通过多次这样的教学尝试,让学生逐步体会到,数学的美是“表里如一”的美,是“形式美”与“内在美”的辩证统一。这些看起来似乎毫无相关的问题通过形式美的启迪,最后升华到了本质上必然的联系,使类似的问题得到统一解决,这样的美育教学随着日子的增长,极大地提高了绝大多数学生的学习兴趣。2 利用数学的简洁美,培养学生的求简意识在数学教学中,教师要深入地钻研教材,更要博览群书,注意寻找与教材有关的美的
6、素材,深刻发掘教材中的美学因素,才能很好地进行数学美育。因为教师只有对数学美有较深刻的领悟与内心感受,并注意艺术地表现出来,才能感染学生,激励学生。从某种意义上说,数学问题就是把现实问题进行数学模型化,然后将复杂的问题通过数学方法转化为简单的问题,由繁化简,一旦简单问题获解,即“问题解决”。因此,在数学的学习与研究中,追求数学的简洁美(亦称简单美),将是学习者、研究者的重要任务。譬如,在推导椭圆的标准方程中,由椭圆的定义得到它的方程,即为所求。但我们看到这方程还相当复杂,不满足“简洁美”的原则,故化简成。至此或许可以告一段落,但我们总觉得似乎还不够和谐,于是令,得到,这是相当完美的形式。常数2
7、a与b的选择本是为“简洁美”而引进的,后来发现它们竟有着鲜明的几何意义!这种“简洁美”与“和谐美”真是一箭双雕!我们应当注意到,数学教学中这种“简洁美”不胜枚举。教师若能适时地引导学生对这种美进行有意识的追求,可以逐步培养学生的求简意识。又如,在“坐标平移”内容中,圆的方程怎样才能变得更简单,使其具有“简洁美”?笔者以下的设计是层层递进的:配方,得,比原方程美(标准形);利用坐标平移可化为又更为美,在复平面坐标系中,可表示为,又比前三者更美;在极坐标方程中可表示为=2。这时圆的方程的美进一步得到了质的升华达到“简洁美”的高峰!渗透数学“简洁美”的教学,一方面可以培养学生的求简意识;另一方面,更
8、重要的是通过数学教学长期的实践,学生会逐步认识到数学在整个自然科学中有着其它学科不可替代的重要地位,它是一种简化复杂问题的重要的科学方法,是一切自然科学与社会科学的基础科和工具科。3 利用数学的和谐美与统一美,培养学生的审美意识在音乐中优美的旋律留给人的记忆是长远的,数学的和谐美与统一美正犹如优美的旋律一样。古希腊数学家毕达哥拉斯有一句至理名言:“凡是美的东西都具有共同的特性,这就是部分与部分,整体与整体之间的协调一致。”1)进行平面几何教学时,不能不挖掘“黄金分割”之和谐美:建筑师设计的很多矩形窗户是符合“黄金分割”的;晚会报幕人站在舞台上的黄金分割点将达到最佳境界;令人扑朔迷离的维纳斯雕像
9、符合黄金分割;庄严美丽的五角星上也有许多黄金分割点;此外,法国的巴黎圣母院、中国故宫的构图都融入了“黄金分割”的匠心。2)天地间有无数个圆,因为圆形最精致、最完美,所以人们总是用“圆满”来表示一切的成功。其实,在解析几何中,圆的表示方法多种多样:平面内到一个定点的距离等于定长的点的轨迹是圆;平面内保持互相垂直的两条直线分别绕着两个定点转动,则两直线交点的轨迹是圆;平面内与两个定点的距离之比为常数a(a0且a1)的点的轨迹是圆;平面内到两个定点A、B的距离的平方和为常数(大于2)的点的轨迹是圆;平面内的一条线段的两端点分别在互相垂直的两条直线上运动,则线段中点的轨迹是圆瞧,同是一个圆,竟然有这么
10、多不同的表示方法,它们又都如此令人惊讶地美妙、和谐与统一起来(在适当的坐标系下方程可以写成的形式)。3)圆锥曲线中椭圆、双曲线、抛物线本是互不相同的曲线(例如椭圆与抛物线无渐近线,椭圆与双曲线是有心曲线,抛物线是无心曲线等等),但可以用统一的定义将它们表示出来:平面内到一个定点与一条定直线的距离之比等于常数e的点的轨迹:当0e1,e=1时分别表示椭圆、双曲线、抛物线,而且在极坐标系中它们有统一形式的方程=ep/(1cos)。4)在立体几何中,棱柱、棱锥、棱台、圆柱、圆锥、圆台与球体这七种几何体似乎是互不相容、毫不相干的,然而若把柱体、锥体、球体当作台体的特殊形式,那么利用中截面面积公式,就可以
11、把这七种几何体的体积统一地表示成.5)在学习排列组合内容时,这里还有两个典型的例子:方程x+y+z+u=100总共有多少组正整数解?如何与所学的知识联系起来呢?你能否找到一个数学模型与这个问题统一起来?经过学生的思考,有学生想到了一个组合的模型:有100个相同的球排成一列,现用三块木板把它们隔开,分成4个部分,每部分至少有一个球,共有多少种分法?至此问题易解。设A=1,2,3,4,5,B=6,7,8,从A到B的映射中,满足f(1)f(2)f(3)f(4)f(5)的映射一共有多少个?应该说上面的第二个问题对学生是有一定的难度的,但教师将这两个问题放在一起,以让他们有个对比联想。从学生自行设计的组
12、合模型使第一个问题得到和谐解决,进一步启发学生考虑第二个问题与第一个问题是否有联系?立即有学生想到,从A到B的映射可分为三类:五对一的映射有个;五对二的映射,先把1、2、3、4、5用一块隔板分成两部分,这两部分依次分别与6、7、8选出两个元素对应,共有个;五对三的映射,先把1、2、3、4、5用两块板分成三个部分,分别对应6、7、8三个元素,共有个。至此用组合问题的“隔板法”使两个表面上看毫无相关的问题得到统一解决。世界之大,千事万物之纷繁复杂,竟有这么多既相互对立又和谐统一的完美的一体。所有这一切,唤醒了学生的审美意识,让他们真正体验到数学美的境界是美不胜收的,从而激发起他们强烈的求知欲;激起
13、他们刻苦拼搏的奋斗精神。统一性是数学美的重要特征之一,多样性的统一更是数学上更高层次的美的规律。对统一性的追求曾极大地促进了数学的发展,也给数学工作者和数学教育者提供了探索和创造科学奇迹的科学思想和方法论原则,进而使学生在学习掌握数学知识的同时,受到具有思想和方法论意义上的审美教育。4 利用数学的奇异美,培养学生的求异意识数学家庞加莱说:“数学的优美感不过就是问题的解答适合我们心灵需要而产生的一种满足。”数学思想方法、数学模型化方法是一道道绚丽多姿的耀眼的光芒,它们独特的奇异美,精巧绝伦,令人赏心悦目。充分利用这种不可抗拒的奇异美的魅力,可以培养学生的求异意识,从而逐步培养起创新意识以至创造性
14、思维的能力。例如:在不等式中,课本有这样的典型题:已知a、b、c且ab,求证。作为教师,我们是否象课本上一样用分析法讲清就完事了呢?笔者认为,这是一个内涵丰富的问题,可以从以下几个问题加以引申:在化学上,这个式子表示:在浓度为的溶液中加入溶质m时,溶液的浓度会变大(所述的不等式“不证自明”).yO在平面几何中,如图1,CFAE,AB=a,CD=b,DF=m,BE=d。,至此利用该图可以证明b).N(b+m,a+m)M(b,a)DFCmbOxdaEA图1图2B在平面解析几何中,如图2,与分别表示直线OM与直线ON的斜率,由图易证1。求证。若1ab且m。求证n+1.从以上问题的深刻挖掘,让学生逐步
15、理解到,数学的“奇异美”来源于现实世界,又将现实世界的数量关系进行“高度抽象化”,从而它具有广泛的应用性。2)设a、b、c、d是互不相等的实数,作函数的图像。事实上,这是一个关于x的三次式,式子对称优美,但太复杂了,作图像谈何容易。仔细观察发现,当x=a,x=b,x=c,x=d时,f(a)=f(b)=f(c)=f(d)=1,这说明三次方程f(x)1=0有四个互不相等的实根,这是不可能的。故对xR恒有f(x)=1。图像是一条直线数学方法是多么的奇妙!3)在三角函数内容中,课本有例题:求值。又有1992年的高考题:求值。教师除按几种常规方法讲解外,还应引导学生从以下几个方面来思考(以下只考虑前者)
16、:在ABC中,由正弦定理及余弦定理,得,可以由此编出许多题来,例如令A=20,B=10,C=150,再将sin10=cos80代入即得上述高考题。因此,原式=。若令则(此法称为构造“对偶式”)由三倍角公式得原式=。以上这些不同的思考方法构思巧妙、解法新颖,充分体现了数学方法的奇异美、创新美,给学生思想方法上深深的启迪。数学方法的奇异美可以给人以内动力,引导直觉和猜想,诱发与激励学生开拓思维的灵活性和创造性,发掘构思奇巧、独特的寻求问题解决的方法。科学家爱因斯坦说过,热爱是最好的老师。笔者已深深体会到这句话的真谛。现在教师常常看到,有些学生不喜欢数学,总是觉得数学难学,又枯燥无味。几年来笔者就是
17、为了解决将学生中对数学的“要我学”的被动式学习转变为“我要学”的主动性学习而不懈地努力。在教学的双边活动中,我坚持不断地深入钻研教材,充分利用教材以及课外相关的美育素材,适时点拔与有意识的引导,学生在长期的“数学美”的熏陶下受到了潜移默化,他们觉得数学不再是索然无味了,而是生动有趣、令人振奋、激励人奋发向上的“美科学“,他们变得“人人喜欢数学”了,基本上人人的数学成绩都得到了稳步的提高,有些同学还获得了省级和全国数学竞赛一、二、三等奖。一位学生给我写上这样的一段话:“老师,你利用数学美来指导教学,使课堂气氛异常活跃,我们全班同学都觉得生动有趣。现在我们已深深地爱上了数学,以至于每节数学课结束以后,我们都觉得余味无穷,内心热切地等待着下一节数学课的到来”我想这是“数学美育”在教学中取得的初步成效吧!数学美育是数学教育中的一朵艳丽多姿的奇葩,是数学教育中一道辉煌灿烂的曙光。它对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年双边借款及担保合同
- 2024一般保证合同范本保证合同
- 2024学校单位食堂承包经营合同
- 2024年企业咨询服务提供与费用支付合同
- 2024学校维修合同模板
- 2024年企业废气处理与环保设施合同
- 2024年劳动合同法解读与应用
- 2024年出口销售合同 for 机械设备 with 付款方式和交货期限
- 机械手柄套课程设计
- 企业员工职业发展规划实施方案
- 交叉口的vissim仿真与优化毕业论文
- 危险源辨识一览表
- 广告宣传类印刷服务项目方案纯方案,124
- 医用高值耗材目录
- 抖音取消实名认证申请书
- 高中英语语法 主谓一致(27张)ppt课件
- 采购管理实务习题答案项目二采购需求分析与计划制定
- MSA-GRR数据自动生成工具
- H型钢最新尺寸规格表大全(共3页)
- 一层框架施工方案
- 工程变更申请单ECR
评论
0/150
提交评论