云南省曲靖市宣威市民中2022年高三(最后冲刺)数学试卷含解析_第1页
云南省曲靖市宣威市民中2022年高三(最后冲刺)数学试卷含解析_第2页
云南省曲靖市宣威市民中2022年高三(最后冲刺)数学试卷含解析_第3页
云南省曲靖市宣威市民中2022年高三(最后冲刺)数学试卷含解析_第4页
云南省曲靖市宣威市民中2022年高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设全集,集合,则( )ABCD2将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是( )ABCD3欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系

2、,它在复变函数论里非常重要,被誉为“数学中的天桥”根据欧拉公式可知,表示的复数位于复平面中的( )A第一象限B第二象限C第三象限D第四象限4一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD5若集合,则=( )ABCD6设全集U=R,集合,则()ABCD7平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD8已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD9已知,函数在区间上恰有个极值点,则正实数的取值范围为( )ABCD10若集合,则

3、=( )ABCD11过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD12已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知正实数满足,则的最小值为 14锐角中,角,所对的边分别为,若,则的取值范围是_.15如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_16在平面直角坐标系中,点的坐标为,点是直线:上位于第一象限内的一点已知以为直径的圆被直线所截得的弦长为,则点的坐标_三、解答题:共70

4、分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:的两个焦点是,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.18(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该

5、商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望参考公式:,19(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.20(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.21(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.22(10分)

6、已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.2D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,函数.在上,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规

7、律,三角函数的图象的对称性,余弦函数的值域,属于中档题3A【解析】计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力.4D【解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平5C【解析】求出集合,然后与集合取交集即可【详解】由题意,则,故答案为C.【点睛】本题考查

8、了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题6A【解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【详解】,则,故选:A【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题7C【解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.8D【解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【详解

9、】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等边三角形,所以,解得.因此,该椭圆的离心率为.故选:D.【点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题9B【解析】先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,再建立不等式求出的范围,进而求得的范围.【详解】解: 令,解得对称轴,又函数在区间恰有个极值点,只需 解得故选:【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函

10、数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.10C【解析】试题分析:化简集合故选C考点:集合的运算11D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.12C

11、【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.二、填空题:本题共4小题,每小题5分,共20分。134【解析】由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解

12、;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值14【解析】由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.15【解析】设,在中利用正弦定理得出关于的函数,从而可得的最小值【详解】解:设,则,在中,由正弦定理可得,即,当即时,取得最小值故答案为【点睛】本题考查正弦定理解三角形的应用,属中档题16【解析】依题意画图,设,根据圆的直径所对的圆周角为直角,可得,通过勾股定理

13、得,再利用两点间的距离公式即可求出,进而得出点坐标.【详解】解:依题意画图,设以为直径的圆被直线所截得的弦长为,且,又因为为圆的直径,则所对的圆周角,则, 则为点到直线:的距离.所以,则.又因为点在直线:上,设,则.解得,则.故答案为: 【点睛】本题考查了直线与圆的位置关系,考查了两点间的距离公式,点到直线的距离公式,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)证明见解析【解析】(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.

14、【详解】(1)因为,由椭圆的定义得,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.18(1);(2)见解析【解析】试题分析:(I)由题意可得,则,关于的线性回归方程为(II)由题意可知二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,据此可得分布列,计算相应的数学期望为元试题解析:(I)依题意:,则关于的线性回归方程为(II)二人所获购物券

15、总金额的可能取值有、元,它们所对应的概率分别为:,所以,总金额的分布列如下表:03006009001200总金额的数学期望为元19(1)1;(2)证明见解析.【解析】(1)利用零点分段法将表示为分段函数的形式,由此求得的最大值,进而求得的值.(2)利用(1)的结论,将转化为,求得的取值范围,利用换元法,结合函数的单调性,证得,由此证得不等式成立.【详解】(1)当时,取得最大值.(2)证明:由(1)得,当且仅当时等号成立, 令,则在上单调递减当时,.【点睛】本小题主要考查含有绝对值的函数的最值的求法,考查利用基本不等式进行证明,属于中档题.20(1);(2)【解析】(1)当时,由题意得到,令,分

16、类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.【点睛】本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.21(1);(2)证明见解析.【解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论