屯溪2021-2022学年高考仿真模拟数学试卷含解析_第1页
屯溪2021-2022学年高考仿真模拟数学试卷含解析_第2页
屯溪2021-2022学年高考仿真模拟数学试卷含解析_第3页
屯溪2021-2022学年高考仿真模拟数学试卷含解析_第4页
屯溪2021-2022学年高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,集合,则等于( )ABCD2已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD3根据党中央关于“精准”

2、脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()ABCD4学业水平测试成绩按照考生原始成绩从高到低分为、五个等级某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班( )A物理化学等级都是的学生至多有人B物理化学等级都是的学生至少有人C这两科只有一科等级为且最高等级为的学生至多有人D这两科只有一科等级为且最高等级为的学生至少有人5是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要6若干年前,某教

3、师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A6500元B7000元C7500元D8000元7的展开式中的系数是( )A160B240C280D3208如果,那么下列不等式成立的是( )ABCD9已知集合,则ABCD10下列说法正确的是( )A“若,则”的否命题是“若,则”B在中,“”是“”成立的必要不充分条件C“若,则”是真命题D存在,使得成立11已知与之间的一组数据:12343.24.87.5若关于的线性回归方程

4、为,则的值为( )A1.5B2.5C3.5D4.512为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( )A24B36C48D64二、填空题:本题共4小题,每小题5分,共20分。13某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次

5、为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为_;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为_.14函数的定义域为_.15在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为_.16已知是偶函数,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.18(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名

6、学生的问卷成绩(单位:分)进行统计,将数据按照,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值: 0.100.050.0250.0100.0050.001 2.7063.8415.0246.63

7、57.87910.82819(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.()若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;()若直线的斜率存在且不为0,四边形为平行四边形,求证:;()在()的条件下,判断四边形能否为矩形,说明理由.20(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.21(12分)2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一

8、次“垃圾分类知识的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布,近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P();(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:(i)得分不低于可获赠2次随机话费,得分低于则只有1次:(ii)每次赠送的随机话费和对应概率如下:赠送话费(单位:元)1020概率现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:,若,

9、则,.22(10分)设为等差数列的前项和,且,(1)求数列的通项公式;(2)若满足不等式的正整数恰有个,求正实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.2D【解析】设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选

10、:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.3A【解析】每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.4D【解析】根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学

11、生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),表格变为:物理化学对于A选项,物理化学等级都是的学生至多有人,A选项错误;对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),C选项错误;对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.故选:D.

12、【点睛】本题考查合情推理,考查推理能力,属于中等题.5B【解析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且 对应的集合是 ,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法集合关系法。设 ,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。6D【解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可【详解】设目前该教师的退休金为x元,则由题意得:600015%x10%1解得x2故选D【点睛】本题考查由条形图和折线图等基础知识解决实际问题,

13、属于基础题7C【解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.8D【解析】利用函数的单调性、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.9C【解析】分析:根据集合可直接求解.详解:,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为

14、最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.10C【解析】A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错.C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故 A错.B:在中,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.11D【解析】利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,解得故选:D【点

15、睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.12B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。130.38 0.9 【解析】考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【详解】第一次烧制后恰有一件产品合格的概率

16、为:.甲、乙、丙三件产品合格的概率分别为:,.故随机变量的可能取值为,故;.故.故答案为:0.38 ;0.9.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.14【解析】对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.15【解析】求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.

17、【点睛】本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.162【解析】由偶函数性质可得,解得,再结合基本不等式即可求解【详解】令得,所以,当且仅当时取等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)证明见解析.【解析】(1),分,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时,函数在区间上单调递减.又,所以函数在区间上恒成立;当时,方程有两个不等实根,且满足,所以函数

18、的导函数在区间上大于零,函数在区间上单增,又,所以函数在区间上恒大于零,不满足题意;当时,在区间上,函数在区间上恒为正数,所以在区间上恒为正数,不满足题意;综上可知:若时,不等式恒成立,的最小值为.(2)由第(1)知:若时,.若,则,即成立.将换成,得成立,即,以此类推,得,上述各式相加,得,又,所以.【点睛】本题考查利用导数研究函数恒成立问题、证明数列不等式问题,考查学生的逻辑推理能力以及数学计算能力,是一道难题.18(1)列联表见解析,有;(2)分布列见解析, .【解析】(1)由频率分布直方图可得分数在、之间的学生人数,可得列联表.根据列联表计算的值,结合参考临界值表可得到结论;(2)从该

19、校高一学生中随机抽取1人,求出该人为“文科方向”的概率.由题意,求出分布列,根据公式求出期望和方差.【详解】(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为理科方向文科方向总计男8030110女405090总计12080200又,所以有99%的把握认为是否为“文科方向”与性别有关.(2)易知从该校高一学生中随机抽取1人,则该人为“文科方向”的概率为.依题意知,所以(),所以的分布列为0123P所以期望,方差.【点睛】本题考查独立性检验,考查离散型随机变量的分布列、期望和方差,属于中档题.19 () ;()证明见解析;()不能,

20、证明见解析【解析】()计算得到故,计算得到面积.() 设为,联立方程得到,计算,同理,根据得到,得到证明.() 设中点为,根据点差法得到,同理,故,得到结论.【详解】(),故,.故四边形的面积为.()设为,则,故,设,故,同理可得,故,即,故.()设中点为,则,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.20(1),(2)(3)【解析】(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【详解】解:(1)依题意:,即,解得:所以,(2),上面两式相减,得:则即所以,(3),所以由得,即【点睛】本题主要考查等差数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论