唐山市重点2021-2022学年高考数学考前最后一卷预测卷含解析_第1页
唐山市重点2021-2022学年高考数学考前最后一卷预测卷含解析_第2页
唐山市重点2021-2022学年高考数学考前最后一卷预测卷含解析_第3页
唐山市重点2021-2022学年高考数学考前最后一卷预测卷含解析_第4页
唐山市重点2021-2022学年高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒

2、成立,则实数的取值范围是( )ABCD2过圆外一点引圆的两条切线,则经过两切点的直线方程是( )ABCD3下列命题是真命题的是( )A若平面,满足,则;B命题:,则:,;C“命题为真”是“命题为真”的充分不必要条件;D命题“若,则”的逆否命题为:“若,则”.4已知奇函数是上的减函数,若满足不等式组,则的最小值为( )A-4B-2C0D45设(是虚数单位),则( )AB1C2D6已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD7函数的定义域为( )ABCD8中国古代数学著作算法统宗中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,

3、请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( )A6里B12里C24里D48里9易经包含着很多哲理,在信息学、天文学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD10已知直线,则“”是“”的A充分不必要条件B必要不充分条件C充

4、分必要条件D既不充分也不必要条件11下列选项中,说法正确的是( )A“”的否定是“”B若向量满足 ,则与的夹角为钝角C若,则D“”是“”的必要条件12已知函数在区间有三个零点,且,若,则的最小正周期为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设、为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:若mn,则m;若m,n,m,n,则;若,m,n,则mn;若,m,n,mn,则n;其中正确命题的序号为_14已知实数、满足,且可行域表示的区域为三角形,则实数的取值范围为_,若目标函数的最小值为-1,则实数等于_.15函数的单调增区间为_.16已知为偶函数,当时,则_三、

5、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的内角、的对边分别为、,满足.有三个条件:;.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.18(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.19(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.20(12分)已知与有两个不同的交点,其横坐标分别为().

6、(1)求实数的取值范围;(2)求证:.21(12分)选修4-5:不等式选讲设函数f(x)=|x-a|,a0(1) 证明:f(x)+f(-1x)2;(2)若不等式f(x)+f(2x)12的解集非空,求a的取值范围22(10分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的

7、方法求的前项和,即可通过不等式来求解的取值范围.【详解】由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,.故选:【点睛】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.2A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选3D【解析】根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,满足,则可能相交,故A错误;命题“:,”的否定为:,故B错误;为真,说明至少一个为真命题,则

8、不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.4B【解析】根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.5A【解析】先利

9、用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【详解】,故选:A【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题6D【解析】求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即: ,是的必要不充分条件,解得实数的取值范围为故选:【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解(2)求解参数的取值范围时, 一定要注意区间端点值的检验7C【解析】函数的定义域应满足 故

10、选C.8C【解析】设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程【详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里故选:C【点睛】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题9B【解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点

11、睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.10C【解析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q

12、所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系11D【解析】对于A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2bm2,但是ab不一定成立;对于D根据元素与集合的关系即可做出判断【详解】选项A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2bm2,但是ab不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是

13、“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.12C【解析】根据题意,知当时,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,当时,由对称轴可知,满足,即.同理,满足,即,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于,当mn时,由直线与平面平行的定义

14、和判定定理,不能得出m,错误;对于,当m,n,且m,n时,由两平面平行的判定定理,不能得出,错误;对于,当,且m,n时,由两平面平行的性质定理,不能得出mn,错误;对于,当,且m,n,mn时,由两平面垂直的性质定理,能够得出n,正确;综上知,正确命题的序号是故答案为:【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.14 【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数的最小值,利用数形结合即可得到结论.【详解】作出可行域如图,则要为三角形需满足在直线下方,即,;目标函数可视为,则为斜率为1的直线纵截距的相反数,该直线截距最大在过

15、点时,此时,直线:,与:的交点为,该点也在直线:上,故,故答案为:;.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题.15【解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.16【解析】由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力三、解答题:共7

16、0分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)先求出角,进而可得出,则中有且只有一个正确,正确,然后分正确和正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,为钝角,与矛盾,故中仅有一个正确,正确.显然,得.当正确时,由,得(无解);当正确时,由于,得;(2)如图,因为,则,则,.【点睛】本题考查解三角形综合应用,涉及三角形面积公式和余弦定理的应用,考查计算能力,属于中等题.18(1)见解析(2).【解析】(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标

17、系求线面角正弦值【详解】解:(1)截面如下图所示:其中,分别为边,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.19(1)(2)【解析】(1)由抛物线定义可知,解得,故抛物线的方程为;(2)设直线:,联立,利用韦达定理算出的中点,又,所以直线的方程为,求出,利用求解即可.【详解】(1)设的准线为,过作于,则由抛物线定义,得,因为到的距离比到轴的距离大1,所以,解得,所以的方程为(2)由题意,设直线方程为,由消

18、去,得,设,则,所以,又因为为的中点,点的坐标为,直线的方程为,令,得,点的坐标为,所以,解得,所以直线的斜率为.【点睛】本题主要考查抛物线的定义,直线与抛物线的位置关系等基础知识,考查学生的运算求解能力.涉及抛物线的弦的中点,斜率问题时,可采用韦达定理或“点差法”求解.20(1);(2)见解析【解析】(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【详解】(1)设函数,令,令故在单调递减,在单调递增,时;时.(2)过点,的直线为,则令,.过点,的直线为,则,在上单调递增.设直线,与从左到右交点的横坐标依次为,由图知.在,处的切线分别为,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【点睛】本题考查了函数与导数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论