青海省西宁第二十一2021-2022学年高三第二次联考数学试卷含解析_第1页
青海省西宁第二十一2021-2022学年高三第二次联考数学试卷含解析_第2页
青海省西宁第二十一2021-2022学年高三第二次联考数学试卷含解析_第3页
青海省西宁第二十一2021-2022学年高三第二次联考数学试卷含解析_第4页
青海省西宁第二十一2021-2022学年高三第二次联考数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1已知命题,;命题若,则,下列命题为真命题的是()ABCD2已知,且,则的值为( )ABCD3已知复数z,则复数z的虚部为( )ABCiDi4一个几何体的三视图如图所示,则该几何体的表面积为( )ABCD845已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D20176已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )ABCD7已知数列的前项和为,且,则的通项公式( )ABCD8某几何体的三视图如图所示,则该几何体的体积为( )ABCD9在中,点,分别在线段,上,且,则( )ABC4D910从5名学生中选出4名分

3、别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A48B72C90D9611正项等差数列的前和为,已知,则=( )A35B36C45D5412已知,则 ()ABCD二、填空题:本题共4小题,每小题5分,共20分。13在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为_.14已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.15下图是一个算法流程图,则输出的的值为_16如图,直线是曲线在处的切线,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为

4、正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.18(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.19(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集20(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设

5、,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数t,t不属于数表M,求t的最大值.21(12分)如图,在四棱锥中,底面为正方形,、分别为、的中点(1)求证:平面;(2)求直线与平面所成角的正弦值22(10分)已知,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】解:命题p:x0,ln(x+1)0,则命题p为真命题,则p为假命题;取a=1,b=2,ab,但a2b2,则命题q是假命题,则q是真命题pq是假命题,pq是真命题,pq是假命题,pq是假命题故选B2

6、A【解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,所以.故选:A.【点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.3B【解析】利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.4B【解析】画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.5B【解析】根据题意计算,计算,

7、得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.6B【解析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】双曲线与的渐近线相同,且焦点在轴上,可设双曲线的方程为,一个焦点为,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.7C【解析】利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,得,所以,所以为常数列,所以,故.故选:C

8、【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.8D【解析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.9B【解析】根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,则在中,又,则则则则故选:B【点

9、睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.10D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛当甲参加另外3场比赛时,共有=72种选择方案;当甲学生不参加任何比赛时,共有=24种选择方案综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题11C【解析】由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,解得或(舍),故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问

10、题要注意应用等差数列的性质()与前 项和的关系.12B【解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力二、填空题:本题共4小题,每小题5分,共20分。133或-1【解析】设,分别令、,两式相减即可得,即可得解.【详解】设,令,则, 令,则,则-得,则,解得或.故答案为:3或-1.【点睛】本题考查了二项式定理的应用,考查了运算能力,属于中档题.14【解析】求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方

11、程为,的离心率:,与的离心率之积为, 的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.153【解析】分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【详解】解:初始,第一次循环: ;第二次循环: ;第三次循环: ;经判断,此时跳出循环,输出.故答案为:【点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.16.【解析】求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.【点睛】本题考查导数与曲线的切线的几何意义,属于基础题.三

12、、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)(文) (理)【解析】(1)证明:取PD中点G,连结GF、AG,GF为PDC的中位线,GFCD且,又AECD且,GFAE且GF=AE,EFGA是平行四边形,则EFAG,又EF不在平面PAD内,AG在平面PAD内,EF面PAD; (2)(文)解:取AD中点O,连结PO,面PAD面ABCD,PAD为正三角形,PO面ABCD,且,又PC为面ABCD斜线,F为PC中点,F到面ABCD距离,故;(理)连OB交CE于M,可得RtEBCRtOAB,MEB=AOB,则MEB+MBE=90,即OMEC连PM,又由(2)知POEC,

13、可得EC平面POM,则PMEC,即PMO是二面角P-EC-D的平面角,在RtEBC中,即二面角P-EC-D的正切值为【方法点晴】本题主要考查线面平行的判定定理、二面角的求法、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法证明的.18 (1) .(2) 【解析】(1)根据极坐标与直角坐标互化公式,以及消去

14、参数,即可求解;(2)设两点对应的参数分别为,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,将直线的参数方程(为参数)代入曲线中,可得.化简得:,则.所以.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应用,着重考查了推理与运算能力,属于基础题.19(1);(2).【解析】(1)依据能成立问题知,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按

15、照零点分段法解含有两个绝对值的不等式即可。【详解】因为不等式有实数解,所以因为,所以故。当时,所以,故当时,所以,故当时,所以,故综上,原不等式的解集为。【点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用。20(1)(2)详见解析(3)29【解析】(1)将,代入,可求出,可代入求,可求结果(2)可求,通过反证法证明,(3)可推出,的最大值,就是集合中元素的最大值,求出【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,得,故(2)证明:已知,由题意知等差数列的通项公式为:;等

16、差数列的通项公式为:,得,得,所以若,则存在,使,若,则存在,使,因此,对于正整数,考虑集合,即,下面证明:集合中至少有一元素是7的倍数反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,其中,则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立即集合中至少有一元素是7的倍数,不妨设该元素为,则存在,使,即,由已证可知,若,则存在,使,而,所以为负整数,设,则,且,所以,当,时,对于整数,若,则成立(3)下面用反证法证明:若对于整数,则,假

17、设命题不成立,即,且则对于整数,存在,使成立,整理,得,又因为,所以且是7的倍数,因为,所以,所以矛盾,即假设不成立所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,所以【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题21(1)见解析;(2).【解析】(1)利用中位线的性质得出,然后利用线面平行的判定定理可证明出平面;(2)以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,设,利用空间向量法可求得直线与平面所成角的正弦值.【详解】(1)因为、分别为、的中点,所以又因为平面,平面,所以平面;(2)以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,设,则,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论