




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、d(2)=&XX2)i/2ijikjk判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有!个样本,对每个样本测得P项指标(变量)的数据,已知每个样本属于k个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。试述系统聚类的基本思想。答:系统聚类的基本思想
2、是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。对样品和变量进行聚类分析时,所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把n个样本看作p维空间的n个点。点之间的距离即可代表样品间的相似度。常用的距离为(一)闵可夫斯基距离:dj(q)=ElXi.-Xjq)1/qk=1q取不同值,分为(1)绝对距离(q=1)d(1)=兰X-Xijikjkk=1k=13)切比雪夫距离d(a)=maxj1kpXik-XjkXXikjkX+Xikjk二)马氏距离d(L)=-兰ijpk
3、=1(三)兰氏距离d2(M)=(XX)21(XX)ijijij对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。将变量看作p维空间的向量,一般用(一)夹角余弦(二)相关系数rij刀(X-X)(X-X)ikijkjk=1(X-X)2刀ikik=1(X-X)2jkj5.4在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答:设dij表示样品与X之间距离,用。口表示类G与Gj之间的距离(1).最短距离法D=mindijX.gG.,XgG.ijIIJJD=mind=minD,DkrXgG,XgGijikjrkpkq(2)最长距离法D=maxdpq
4、XgG,XgGijzpjqD=maxd=maxD,DkrXgG,XgGijkpkqikjr中间距离法D2=1D2+1D2+BD2kr2kp2kqpq其中-一-重心法D2=(X-X)(X-X)X=丄(nX+nX)pqpqpqrnpprnnnnD2=D2+D2pqD2krnkpnkqn2Pqr(5)类平均法D2=1工工d2D2=1工工d2nn=D2+qD2pqnnijkrnnijnkpnkqpqXi叫X“JkrXi叫XeGjrrr可变类平均法nnD2=(1-P)(pD2+qD2)+PD2krnkPnkqpqrr其中P是可变的且P1可变法1-PD2=(D2+D2)+pD2其中p是可变的且p1kr2k
5、pkqpq离差平方和法s=总(x-x)(x-X)TOC o 1-5 h ztittittt=1n+nn+nnD2=kpD2+kqD2一kD2krn+nkpn+nkqn+npqrkrkrk通常选择距离公式应注意遵循以下的基本原则:要考虑所选择的距离公式在实际应用中有明确的意义。如欧氏距离就有非常明确的空间距离概念。马氏距离有消除量纲影响的作用。要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。要考虑研究对象的特点和计算量的大小。样品间距离公式的选择是一个比较复杂且带有一定主观性的问题,我们应根据研究对象的特点不同做出具
6、体分折。实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以确定最合适的距离测度方法。5.5试述K均值法与系统聚类法的异同。答:相同:K均值法和系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的。不同:系统聚类对不同的类数产生一系列的聚类结果,而K均值法只能产生指定类数的聚类结果。具体类数的确定,离不开实践经验的积累;有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K均值法确定类数的参考。5.6试述K均值法与系统聚类有何区别?试述有序聚类法的基本思想。答:K均值法的基本思想是将每一个样品分配给最近中心(均值)的类中。系统聚类对不同的
7、类数产生一系列的聚类结果,而K均值法只能产生指定类数的聚类结果。具体类数的确-0定,有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K均值法确定类数的参考。有序聚类就是解决样品的次序不能变动时的聚类分析问题。如果用X,X,,X表示(2)(n)n个有序的样品,则每一类必须是这样的形式,即X,X,,X,其中1in,且(i)(i+1)(j)j?lusters:2numbetoTdusters:4Continue:CflHCtii-feip图5.2Statistics子对话框图5.3Plots子对话框4.点击Method按钮,设置系统聚类的方法选项。ClusterMethod下拉列表用于
8、指定聚类的方法,这里选择Between-groupinkage(组间平均数连接距离);Measure栏用于选择对距离和相似性的测度方法,选择SquaredEuclideandistance(欧氏距离);单击Continue按钮,返回主界面。甥HierarchcaclulrArulysit:Sj.Ill-ClusterNoneOSJnefesoiuiionMurrterofdusters:的凹匕E吕EjUticiri忑Mrittiumnumberd1clustersjJ/laKrTiumn.-rnkier口fclusters:4Help图5.5Save子对话框图5.4Method子对话框点击Sa
9、ve按钮,指定保存在数据文件中的用于表明聚类结果的新变量。None表示不保存任何新变量;Singlesolution表示生成一个分类变量,在其后的矩形框中输入要分成的类数;Rangeofsolutions表示生成多个分类变量。这里我们选择Rangeofsolutions,并在后面的两个矩形框中分别输入2和4,即生成三个新的分类变量,分别表明将样品分为2类、3类和4类时的聚类结果,如图5.5。点击Continue,返回主界面。点击0K按钮,运行系统聚类过程。聚类结果分析:下面的群集成员表给出了把公司分为2类,3类,4类时各个样本所属类别的情况,另外,从右边的树形图也可以直观地看到,若将15个公司
10、分为2类,则13独自为一类,其余的为一类;若分为3类,则公司8分离出来,自成一类。以此类推。EESC-iled.Dist-aiiceClustErCoutlineLDID图5.6聚类树形图?14115B13CASELakielNun表5.1各样品所属类别表b)K均值法的步骤如下:1.在SPSS窗口中选择AnalyzefClassifyfK-MeansCluster,调出K均值聚类分析主界面,并将变量X1-X8移入Variables框中。在Method框中选择Iterateclassify,即使用K-means算法不断计算新的类中心,并替换旧的类中心(若选择Classifyonly,则根据初始类
11、中心进行聚类,在聚类过程中不改变类中心)。在NumberofCluster后面的矩形框中输入想要把样品聚成的类数,这里我们输入3,即将15个公司分为3类。(Centers按钮,则用于设置迭代的初始类中心。如果不手工设置,则系统会自动设置初始类中心,这里我们不作设置。)2.点击Iterate按钮,对迭代参数进行设置。MaximumIterations参数框用于设定K-means算法迭代的最大次数,输入10,ConvergenceCriterion参数框用于设定算法的收敛判据,输入0,只要在迭代的过程中先满足了其中的参数,则迭代过程就停止。单击Continue,返回主界面。圍K-Meansclus
12、terAnalysis:iterateWaximuinterstiong:hoCanvergenceCriterion:q:Userunningmeanscontinue匚ancelHelp图5.8Iterate子对话框3.点击Save按钮,设置保存在数据文件中的表明聚类结果的新变量。我们将两个复选框都选中,其中Clustermembership选项用于建立一个代表聚类结果的变量,默认变量名为qcl_1;Distancefromclustercenter选项建立一个新变量,代表各观测量与其所属类中心的欧氏距离。单击Continue按钮返回。0ClustermembershipHDistance
13、fromclustercenterContinueCancelHelp图5.9Save子对话框4.点击Options按钮,指定要计算的统计量。选中Initialclustercenters和Clusterinformationforeachcase复选框。这样,在输出窗口中将给出聚类的初始类中心和每个公司的分类信息,包括分配到哪一类和该公司距所属类中心的距离。单击Continue返回。StartHrittoidusterccrterjANWAtabfe*CluslerInrutmallonfarescticsse-imr&siiKivaiuos()&cuctanstwise:0EclugsFw
14、iseContinueCeticel卍Ip图5.10Options子对话框点击OK按钮,运行K均值聚类分析程序。聚类结果分析:以下三表给出了各公司所属的类及其与所属类中心的距离,聚类形成的类的中心的各变量值以及各类的公司数。由以上表格可得公司13与公司8各自成一类,其余的公司为一类。通过比较可知,两种聚类方法得到的聚类结果完全一致。室1398.1532312.9代33235.34643531609.9586393.39913205.51132.OOC9395.9231338.967113834.134123101.3521?1.OOC143246.882153433.1rs策类11.00021
15、.000313.000有蝕15.000.000毎亍聚类中的案例数聚类123划95.7911.126.48y.2-5.20-1.69.08x3.5012.39姻252.34132.1471.48y.599.34100.0092.06如-5.42-.661.90y.7-9816.52-4454.39-103.94-46.82-627511.91巖终饕类中心5.9下表是某年我国16个地区农民支出情况的抽样调查数据,每个地区调查了反映每人平均生活消费支出情况的六个经济指标。试通过统计分析软件用不同的方法进行系统聚类分析,并比较何种方法与人们观察到的实际情况较接近。地区食品衣着燃料住房交通和通讯娱乐教育
16、文化北京190.3343.779.7360.5449.019.04天津135.236.410.4744.1636.493.94河北95.2122.839.322.4422.812.8山西104.7825.116.49.8918.173.25内蒙128.4127.638.9412.5823.992.27辽宁145.6832.8317.7927.2939.093.47吉林159.3733.3818.3711.8125.295.22黑龙江116.2229.5713.2413.7621.756.04上海221.1138.6412.53115.6550.825.89江苏144.9829.1211.674
17、2.627.35.74浙江169.9232.7512.7247.1234.355安徽135.1123.0915.6223.5418.186.39福建144.9221.2616.9619.5221.756.73江西140.5421.517.6419.1915.974.94山东115.8430.2612.233.633.773.85河南101.1823.268.4620.220.54.3解:令食品支出为X1,衣着支出为X2,燃料支出为X3,住房支出为X4,交通和通讯支出为X5,娱乐教育文化支出为X6,用spss对16各地区聚类分析的步骤如5.8题,不同的方法在第4个步骤的Method子对话框中选择
18、不同的Clustermethod。Between-groupinkage(组间平均数连接距离)空:闭14W2E=111122213321A321522162217221a22194321D221111111222113221142211-.32115321CASE0510Lah亡J.Mundd一一-一一-十16q15Z106IE均125B11119152D2S+十上表给出了把全国16个地区分为2类、3类和4类时,各地区所属的类别,另外从右边的树形图也可以直观地观察到,若用组间平均数连接距离将这些地区分为3类,则9(上海)独自为一类,1(北京)和11(浙江)为一类,剩余地区为一类。Within-
19、grouplinkage(组内平均连接距离)3薛2-W11112221332143215221622172218321g1311D221li22112E11132211J221152211g321CASELabelNum5015101312611119+10_+15_E0-+若用组内平均数连接距离将这些地区分为3类,则9(上海)独自为一类,1(北京)独自为一类,剩余地区为一类。3.Nearestneighbor(最短距离法)珈14TEB3fil隼2S11I22113221+2215221822172Q1g22193321022111421122Q113221142211522116221CAS
20、ELabelNII十20-+若用最短距离法将这些地区分为3类,则9(上海)独自为一类,1(北京)独自为一类,剩余地区为一类。4.Furthestneighbor(最远距离法)土;|3群集231ft1I1i3222332243225R3227丄2222283229a3110222111111222213222H222153221632HEScfllEdBlseanceCluscerCombine匚A5E5ID15ZD25LabelNwui+1-1-t-+3_15ZI10_6一-i一12_7-1-19若用最远距离法将这些地区分为3类,则9(上海)独自为一类,1(北京)和11(浙江)为一类,剩余地区
21、为一类。5.Centroidcluster(重心法)4科年3IS年2蓉111122213321A32152i62217221822ig43210221T11111222i13221142211512116321若用重心法将这些地区分为3类,则9(上海)独自为一类,1(北京)和11(浙江)为一类,剩余地区为一类。Mediancluster(中位数距离)CELahElNuiri,则9(上海)独自为一类,1(北京)和11(浙江)Wardmethod(离差平方和)客闻1髀集32if#1i1I2222333243325332621272223332g41IID2221111I12222133221422
22、2153216332CALabel10-4-152D-+若用离差平方和法将这些地区分为3类,则9(上海),1(北京)和11(浙江)为一类,2(天津)、6(辽宁)、7(吉林)、10(江苏)、12(安徽)、13(福建)和14(江西)为一类,剩余地区为一类。5.10根据上题数据通过SPSS统计分析软件进行快速聚类运算,并与系统聚类分析结果进行比较。解:快速聚类运算即K均值法聚类,具体步骤同5.8,聚类结果如下:室縮1146.7512122.9203322.4004316.8645313.8306115.2557126.265837.51392.00010114.59011117.90612319.5
23、0113125.91214325.20315319.20116316.4031:3166.77221.11117.1632.7999.6425.41;13.9612.5311.48y.A30.15115.6519.40n51R?7IAA5.595sg4.237.00011.010J8.ODO16.0DQ.ngo毎个玉找中的案洌敷聚类的结果为9(上海)独自为一类,1(北京)、2(天津)、6(辽宁)、7(吉林)、10(江苏)、11(浙江)、13(福建)和14(江西)为一类,剩余地区为一类。5.11下表是2003年我国省会城市和计划单列市的主要经济指标:人均GDPx(元)、1人均工业产值X(元)、客
24、运总量x(万人)、货运总量x(万吨)、地方财政预算内收入XTOC o 1-5 h z2345(亿元)、固定资产投资总额X(亿元)、在岗职工占总人口的比例X(%)、在岗职工人均67工资额X(元)、城乡居民年底储蓄余额X(亿元、。试通过统计分析软件进行系统聚类分89析,并比较何种方法与人们观察到的实际情况较接近。城市x1x2x3x4x5x6x7x8x9北京31886331683052030671593200037.8253126441天津264334373235073467920593418.8186481825石家庄15134131591184310008494169.5123061044太原1
25、5752158312975152483319722.812679660呼和浩特1899111257350841552118213.514116255沈阳23268154466612146368155714.8149611423大连2914527615110012108111140714.7175601310长春18630210456999108924629412.513870831哈尔滨148257561645895187642317.7124511154上海4658677083721263861899227421.0273056055南京275474385316790148051367941
26、5.4221901134杭州3266749823213491681515071711.8246671466宁波3254347904249381379713955510.9236911060合肥106211171460344641362458.313901359福州2228121310968082506737611.815053876厦门5359093126444130557023838.619024397南昌142219205572844543121011.013913483济南23437226345810143547642913.516027758青岛24705355061466630553
27、12054814.515335908郑州16674140231070978476637312.7135381048武汉212781708311882166108062317.4137301286长沙15446887310609106316043410.016987705广州48220554042975128859275108925.1288053727深圳19183834751910989679329187569.6310532199南宁8176339070165893361708.313171451海口1644214553132843304129916.514819284重庆71905076
28、582903245016211876.5124401897成都17914928972793287989078811.9152741494贵阳11046103501851153184023115.812181345昆明16215116015126123386034214.614255709西安1314089131141393926544615.9135051211兰州1445917136220955812120318.013489468西宁706656052788203787610.114629175银川1178711013214621271213421.913497193乌鲁木齐2250817
29、1372188127544118026.116509420南宁31886331683052030671593200037.8253126441海口264334373235073467920593418.8186481825资料来源:中国统计年鉴2004解:用spss对37个地区聚类分析的步骤如5.8题,不同的方法在第4个步骤的Method子对话框中选择不同的Clustermethod。l.Between-groupinkage(组间平均数连接距离)31i口11223-35S1513213口3汕2231173-3B从上面的树形图可以直观地观察到,若用组间平均数连接距离将这些地区分为3类,则24(深圳)独自为一类,10(上海)和16(厦门)为一类,剩余地区为一类。2.Within-grouplinkage(组内平均连接距离)371922312D253314273
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工厂安全培训考试试题答案完美版
- 2025年新入职工入职安全培训考试试题答案高清版
- 2024-2025项目安全培训考试试题【预热题】
- 2025年公司三级安全培训考试试题含答案【完整版】
- 2024-2025新入员工安全培训考试试题及答案【真题汇编】
- 2024-2025公司厂级安全培训考试试题带答案AB卷
- 2025年企业安全培训考试试题附参考答案【黄金题型】
- 2025年中国抽油机行业市场占有率及投资前景预测分析报告
- 2024-2025工厂职工安全培训考试试题及答案新
- 2025至2031年中国皮具标牌行业投资前景及策略咨询研究报告
- 2025年人教版小学数学二年级下册期末考试卷(带答案解析)
- 西师大版小学五年级 数学(下)期末测试题(含答案)
- 化工工艺原理考试题库梳理
- 定金款管理制度
- 光伏电站安全培训
- GB/T 37027-2025网络安全技术网络攻击和网络攻击事件判定准则
- 2025年江苏南通苏北七市高三二模高考物理试卷(含答案详解)
- 2024年药理学考试真题回顾试题及答案
- 2024年绵阳市商业银行招聘考试真题
- 2025年军队文职(司机类)核心知识点备考题库(含答案)
- 2025年深圳二模考试试题及答案
评论
0/150
提交评论