下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE PAGE 4单元质检六数列(A)(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.已知等差数列an的前n项和为Sn,a6=15,S9=99,则等差数列an的公差是()A.14B.4C.-4D.-3答案:B解析:数列an是等差数列,a6=15,S9=99,a1+a9=22,2a5=22,a5=11.公差d=a6-a5=4.2.已知公比为32的等比数列an的各项都是正数,且a3a11=16,则log2a16=()A.4B.5C.6D.7答案:B解析:由等比中项的性质,得a3a11=a72=16.因为数列an各项都是正数,所以a7=4.所以a16=a7q
2、9=32.所以log2a16=5.3.在等差数列an中,已知a4=5,a3是a2和a6的等比中项,则数列an的前5项的和为()A.15B.20C.25D.15或25答案:A解析:设an的公差为d.在等差数列an中,a4=5,a3是a2和a6的等比中项,a1+3d=5,(a1+2d)2=(a1+d)(a1+5d),解得a1=-1,d=2,S5=5a1+542d=5(-1)+54=15.故选A.4.已知等差数列an和等比数列bn满足3a1-a82+3a15=0,且a8=b10,则b3b17=()A.9B.12C.16D.36答案:D解析:由3a1-a82+3a15=0,得a82=3a1+3a15=
3、3(a1+a15)=32a8,即a82-6a8=0.因为a8=b100,所以a8=6,b10=6,所以b3b17=b102=36.5.设公比为q(q0)的等比数列an的前n项和为Sn,若S2=3a2+2,S4=3a4+2,则a1=()A.-2B.-1C.12D.23答案:B解析:S2=3a2+2,S4=3a4+2,S4-S2=3(a4-a2),即a1(q3+q2)=3a1(q3-q),q0,解得q=32,代入a1(1+q)=3a1q+2,解得a1=-1.6.已知函数f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x).若数列an满足a1=12,且an+1=11-an,则f(a11)=
4、()A.2B.-2C.6D.-6答案:C解析:设x0,则-x0.因为f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-x(1+x)=x(1+x).由a1=12,且an+1=11-an,得a2=11-a1=11-12=2,a3=11-a2=11-2=-1,a4=11-a3=11-(-1)=12,所以数列an是以3为周期的周期数列,即a11=a33+2=a2=2.所以f(a11)=f(a2)=f(2)=2(1+2)=6.二、填空题(本大题共2小题,每小题7分,共14分)7.已知数列an满足a1=1,an-an+1=2anan+1,则a6=.答案:111解析:由an-an+1=2anan+
5、1,得1an+1-1an=2,即数列1an是以1a1=1为首项,2为公差的等差数列.所以1a6=1a1+52=11,即a6=111.8.我国古代数学家杨辉、朱世杰等研究过高阶等差数列的求和问题,如数列n(n+1)2就是二阶等差数列.数列n(n+1)2(nN*)的前3项和是.答案:10解析:令an=n(n+1)2,则a1=122=1,a2=232=3,a3=342=6,S3=1+3+6=10.故答案为10.三、解答题(本大题共3小题,共44分)9.(14分)记Sn为等差数列an的前n项和,已知a1=-7,S3=-15.(1)求an的通项公式;(2)求Sn,并求Sn的最小值.解:(1)设an的公差
6、为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以an的通项公式为an=2n-9.(2)由(1)得Sn=n2-8n=(n-4)2-16.所以当n=4时,Sn取得最小值,最小值为-16.10.(15分)已知数列an满足an=6-9an-1(nN*,n2).(1)求证:数列1an-3是等差数列;(2)若a1=6,求数列lg an的前999项的和.答案:(1)证明1an-3-1an-1-3=an-13an-1-9-1an-1-3=an-1-33an-1-9=13(n2),数列1an-3是等差数列.(2)解1an-3是等差数列,且1a1-3=13,d=13,1an-3=1a1-3+13(n
7、-1)=n3.an=3(n+1)n.lgan=lg(n+1)-lgn+lg3.设数列lgan的前999项的和为S,则S=999lg3+(lg2-lg1+lg3-lg2+lg1000-lg999)=999lg3+lg1000=3+999lg3.11.(15分)设数列an满足a1=2,an+1-an=322n-1.(1)求数列an的通项公式;(2)令bn=nan,求数列bn的前n项和Sn.解:(1)由已知,当n1时,an+1=(an+1-an)+(an-an-1)+(a2-a1)+a1=3(22n-1+22n-3+2)+2=22(n+1)-1.而a1=2,所以数列an的通项公式为an=22n-1.(2)由bn=n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专用设备制造加工服务费协议样本版B版
- 11拧螺丝 说课稿-2023-2024学年科学二年级下册苏教版
- 揭秘文学之魅
- 6 观察与比较 说课稿-2024-2025学年科学一年级上册教科版
- 供应链优化管理与合作服务合同
- 二手房屋买卖补充协议范本
- 长期租赁车辆协议书
- 蔬菜配送合同模板
- 专属工作任务承揽协议一
- 互联网科技企业战略合作框架协议
- 江苏省苏州市昆山、太仓、常熟、张家港四市2024-2025学年九年级上学期期末阳光测试道法卷(含答案)
- 温湿度记录管理制度模版(3篇)
- 二年级数学两位数加两位数计算题同步检测训练题
- 2025的委托拍卖合同范本
- 弹性模量自动生成记录
- 老年痴呆患者安全护理
- 管理制度医疗器械质量管理制度
- 颅脑损伤的高压氧治疗
- 公司章程模板五篇
- 汽车行走的艺术学习通超星期末考试答案章节答案2024年
- 2025届山东省菏泽市部分重点学校高一上数学期末统考模拟试题含解析
评论
0/150
提交评论