推理与证明.知识框架 普通高中数学复习讲义Word版_第1页
推理与证明.知识框架 普通高中数学复习讲义Word版_第2页
推理与证明.知识框架 普通高中数学复习讲义Word版_第3页
推理与证明.知识框架 普通高中数学复习讲义Word版_第4页
推理与证明.知识框架 普通高中数学复习讲义Word版_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、模块框架合情推珅合悄推理与演绎椎理演绎推理数学!I呦滋堆砒证明整用问题谨明恒等式与不等式数列中的數学归纳法瓦他炎型题综合注|仃析法坪艮证法二匸高考要求合情推理演绎证明与数学归纳法要求层次重难点推理证明A掌握数学归纳法的证明步骤,熟练表达数学归纳法证明过程.对数学归纳法的认识不断深化掌握数学归纳法的应用:证恒等式;整除性的证明;探求平面几何中的问题;探求数列的通项;不等式的证明.直接证明与间接证明A数学归纳法B演绎推理Cmin&知识内容一、合情推理与演绎推理推理根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一

2、部分是由已知推出的判断,叫结论.合情推理:根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情推理。合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的

3、推理。三段论是演绎推理的一般模式,它包括:(1)大前提-已知的一般原理;(2)小前提-所研究的特殊情况;(3)结论根据一般原理,对特殊情况作出的判断。演绎法:如果一般的命题是已经证明了的,或者是未经证明而作为真理用的,那么以这个一般命题推出的每一个特殊命题也就是正确的象这样由一般到特殊的推理方法,通常称为演绎推理或者演绎法归纳法:先考察一些特殊的事例,然后分析它们共同具有的特征,作出一般的结论.象这样由特殊到一般的推理方法通常称为归纳推理,或者归纳法.归纳法又分为完全归纳法和不完全归纳法两种.(1)由一些特殊事例推出一般结论的推理方法特点:特殊一一般.(2)不完全归纳法:从一个或几个(但不是全

4、部)特殊情况作出一般性结论的归纳推理.不完全归纳法又叫做普通归纳法.这种归纳法是以一定数量的事实作基础,进行分析研究,找出规律.但是,由于不完全归纳法是以有限数量的事实作为基础而得出的一般性结论.这样作出的结论有时可能不正确.例如,在数列a二n2+n+41中,当n项数为1,2,3,38,39时,数列的项分别为43,47,53,1601,这些数都是质数,如果由此得出“数列a(其中a二n+n+41)的所有项都是nn质数”的结论,那么就不对了.因为当n=40时,则a二402+40+41二412,可n以看出,a的值不是质数了,而是合数.虽然不完全归纳法的结论有时可能不40正确,但它仍是一种重要的推理方

5、法.完全归纳法:作为结论依据的观察,如果包含了规律所涉及的一切现象,这种归纳法叫做完全归纳法.由完全归纳所得出的结论是可靠的.完全归纳法是把出现的特殊情况完全无遗的一一加以研究,从而得出一般性的结论的推理方法.完全归纳法又叫做枚举归纳法.应用完全归纳法,在考虑各种情况时,应做到不重不漏.教师备案完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的通常在事物包括的特殊情况数不多时,采用完全归纳法二、直接证明与间接证明三种证明方法的定义与步骤:综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义

6、、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。丄析法是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直至U推理中导出矛盾为止断言假设不成立(4)肯定原命题的结论成立三、数学归纳法数学归纳法:对于某些与自然数n有关的命题常常

7、采用下面的方法来证明它的正确性:先证明当n取第一个值n时命题成立;然后假设当n=k(keN*,k三0n)时命题成立,证明当n二k+1命题也成立+这种证明方法就叫做数学归纳0法.数学归纳法的基本思想:数学归纳法是完全归纳法的一种.它是一种归纳演绎的推理方法.数学归纳法的理论依据是“自然数归纳原理”设A(n)表示关于自然数n的一命题,如果满足条件:(i)A(1)正确;(ii)假设A(k)成立,推断A(k+1)也成立、那么A(n)对一切自然数n都成立其中第(i)是验证,它是证明的基础;第(ii)是以假设A(k)成立,通过演绎推理,推证出A(k+1)也正确.即先验证使结论有意义的最小的正整数n,如果当

8、n二n时,命题成立,再假设当n二k(keN*,k三n)时,000命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n二k+1时,命题也成立,那么就可以递推出对所有不小于n的正整数n+1,00n+2,命题都成立.0用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n结论正确;0假设当n=k(keN*,k三n)时结论正确,证明当n=k+1时结论也正确.0(3)由(1),(2)可知,命题对于从n开始的所有正整数n都正确.0教师备案数学归纳法被用来证明与自然数有关的命题:递推基础不可少,归纳假设要用到,结论写明莫忘掉.用数学归纳法证题时,两步缺一不可;(2)证题时

9、要注意两凑:一凑归纳假设,二凑目标.教师备案数学归纳法大致可分为两个步骤,第一步,验证命题对某个自然数n=n成立,(nN),般取n=1,第二步假设n=k(kN,k三n)的时候,000命题成立,证明当n=k+1时命题也成立至此就可以得到结论,命题对于n和0比n大的所有自然数都成立.0如果将证明数学命题用建筑高楼来比喻,这两步中,第一部可以看作是奠基部分,第二步可以看作是建设部分,整个命题的基础就在第一步,如果忽略第一步,或者是第一步错误的话,那么不管第二步的证明有多巧妙和精彩,都如大厦建在沙子上一样,是不稳固的;而整个命题的递推过程在于第二步,如果递推过程出现了问题或者瑕疵,那么就如同建筑中的“烂尾楼”一般,得不到一个圆满的结局.由此可见,这两步都非常重要,缺一不可.数学归纳法是证明有递推性或可转化为递推性命题的有效手段,它的思路明晰,形式优美,但也要看到它的局限性,那就是并不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论