2022年湖南省长沙市教科所中考联考数学试卷含解析_第1页
2022年湖南省长沙市教科所中考联考数学试卷含解析_第2页
2022年湖南省长沙市教科所中考联考数学试卷含解析_第3页
2022年湖南省长沙市教科所中考联考数学试卷含解析_第4页
2022年湖南省长沙市教科所中考联考数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各式计算正确的是( )ABCD2 “龟兔赛跑”是同学们熟悉的寓言故事如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子)下列叙述正确的是( )A赛跑中,兔子共休息了50分钟B乌龟在这次比赛中的平均速度是0.1米/分钟C兔子比乌龟早到达终点10

2、分钟D乌龟追上兔子用了20分钟3如图,矩形中,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )A3B4CD54若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D25分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-16若x是2的相反数,|y|=3,则的值是()A2B4C2或4D2或47计算:的结果是( )ABCD8关于x的不等式x-b0恰有两个负整数解,则b的取值范围是A B C D 9下列对一元二次方程x2+x3=0根的情况的判断,正确的是()

3、A有两个不相等实数根B有两个相等实数根C有且只有一个实数根D没有实数根10若数a,b在数轴上的位置如图示,则()Aa+b0Bab0Cab0Dab0二、填空题(共7小题,每小题3分,满分21分)11若式子有意义,则x的取值范围是 12已知关于x的一元二次方程(k5)x22x+2=0有实根,则k的取值范围为_13正六边形的每个内角等于_14如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是_15如图,将一幅三角板的直角顶点重合放置,其中A=30,CDE=45若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周

4、当DCE一边与AB平行时,ECB的度数为_16化简: _.17若与是同类项,则的立方根是 三、解答题(共7小题,满分69分)18(10分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.19(5分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款某公司为奖励员工,购买了甲种商品20件,乙种商品x(x20)件(1)分别直接写出优惠

5、方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠20(8分)已知:二次函数C1:y1ax2+2ax+a1(a0)把二次函数C1的表达式化成ya(xh)2+b(a0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(3,1)求a的值;点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB二次函数C2:y2kx2+kx(k0)的图象,与线段AB只有一个

6、交点,求k的取值范围21(10分)某市飞翔航模小队,计划购进一批无人机已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍设购进A型无人机x台,总费用为y元求y与x的关系式;购进A型、B型无人机各多少台,才能使总费用最少?22(10分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P

7、(1)求这条抛物线的表达式和顶点P的坐标; (2)抛物线的对称轴与x轴相交于点M,求PMC的正切值;(3)点Q在y轴上,且BCQ与CMP相似,求点Q的坐标23(12分)小明对,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表超市女工人数占比62.5%62.5%50%75%超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.24(14分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长

8、线交于点F(1)求证:ADEBFE;(2)若DF平分ADC,连接CE,试判断CE和DF的位置关系,并说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】A选项中,不是同类二次根式,不能合并,本选项错误;B选项中,本选项正确;C选项中,而不是等于,本选项错误;D选项中,本选项错误;故选B.2、D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-1040(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子

9、比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.3、B【解析】连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求【详解】连接DF,四边形ABCD是矩形 在中, 故选:B【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键4、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即

10、-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键5、A【解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2两个条件需同时具备,缺一不可据此可以解答本题【详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-3故选:A【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件6、D【解析】直接利用相反数以及绝对值的定义得出x,

11、y的值,进而得出答案【详解】解:x是1的相反数,|y|=3,x=-1,y=3,y-x=4或-1故选D【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键7、B【解析】根据分式的运算法则即可求出答案【详解】解:原式=故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型8、A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x的不等式x-b0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9、A【解析】【分析】根据方程的

12、系数结合根的判别式,即可得出=130,进而即可得出方程x2+x3=0有两个不相等的实数根【详解】a=1,b=1,c=3,=b24ac=124(1)(3)=130,方程x2+x3=0有两个不相等的实数根,故选A【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根10、D【解析】首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案【详解】由数轴可知:a0b,a-1,0b1,所以,A.a+b0,故原选项错误;B. ab0,故原选项错误;C.a-b0,故原选项错误;D.,正确.故选

13、D【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系二、填空题(共7小题,每小题3分,满分21分)11、且【解析】式子在实数范围内有意义,x+10,且x0,解得:x-1且x0.故答案为x-1且x0.12、【解析】若一元二次方程有实根,则根的判别式=b2-4ac0,且k-10,建立关于k的不等式组,求出k的取值范围【详解】解:方程有两个实数根,=b2-4ac=(-2)2-42(k-1)=44-8k0,且k-10,解得:k且k1,故答案为k且k1【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数

14、根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根13、120【解析】试题解析:六边形的内角和为:(6-2)180=720,正六边形的每个内角为:=120.考点:多边形的内角与外角.14、【解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【详解】解:由图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、15、30、60、120、150、165【解析】分析:根据CDAB,CEAB和DE

15、AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况详解:、CDAB, ACD=A=30, ACD+ACE=DCE=90,ECB+ACE=ACB=90,ECB=ACD=30;CDAB时,BCD=B=60,ECB=BCD+EDC=60+90=150如图1,CEAB,ACE=A=30,ECB=ACB+ACE=90+30=120;CEAB时,ECB=B=60如图2,DEAB时,延长CD交AB于F, 则BFC=D=45,在BCF中,BCF=180-B-BFC,=180-60-45=75,ECB=BCF+ECF=75+90=165或ECB=9075=15点睛

16、:本题主要考查的是平行线的性质与判定,属于中等难度的题型解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数16、a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。【详解】解:原式=a+b【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键17、2【解析】试题分析:若与是同类项,则:,解方程得:=23(2)=8.8的立方根是2故答案为2考点:2立方根;2合并同类项;3解二元一次方程组;4综合题三、解答题(共7小题,满分69分)18、15【解析】试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度

17、为,由题意得 ,解得 .经检验是原方程的解.答: 骑车学生的速度为15.19、(1)y1=80 x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)y1=20300+80(x-20) 得:y1=80 x+4400;y2=(20300+80 x)0.8 得:y2=64x+4800;(2)w=300m+300(20-m)+80(40-m)0.8, w=-4m+7360,因为w是m的

18、一次函数,k=-40, 所以w随的增加而减小,m当m=20时,w取得最小值. 即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品. 20、 (1)y1a(x+1)21,顶点为(1,1);(2);k的取值范围是k或k1【解析】(1)化成顶点式即可求得;(2)把点A(3,1)代入二次函数C1:y1ax2+2ax+a1即可求得a的值;根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1ax2+2ax+a1a(x+1)21,顶点为(1,1);(2)二次函数C1的图象经过点A(3,1),a(3+1)211,a;A(3,1),对称轴为直线x1,B(1,1),当k0时,二次函

19、数C2:y2kx2+kx(k0)的图象经过A(3,1)时,19k3k,解得k,二次函数C2:y2kx2+kx(k0)的图象经过B(1,1)时,1k+k,解得k,k,当k0时,二次函数C2:y2kx2+kxk(x+)2k,k1,k1,综上,二次函数C2:y2kx2+kx(k0)的图象,与线段AB只有一个交点,k的取值范围是k或k1【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键21、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)y200 x+50000;购进A型、B型无人机各16台、34台时,才能使总费用最少【解析】(1)

20、根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y与x的函数关系式;根据中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少【详解】解:(1)设一台型无人机售价元,一台型无人机的售价元, ,解得,答:一台型无人机售价元,一台型无人机的售价元;(2)由题意可得,即y与x的函数关系式为;B型无人机的数量不少于A型无人机的数量的2倍,解得,当时,y取得最小值,此时,答:购进型、型无人机各台、台时,才能使总费用最少【点睛】本题考查

21、二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答22、(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC/PM,可得PMC=MCO,求tanMCO即可 ;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),OC=3,OA=OC,OA=3,A(3,0),A、B关于x=1对称,B(-1,0),A、B在抛物线y=ax2+bx+3上, , ,抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),OC=3,OM=1,OC/PM,PMC=MCO,tanPMC=tanMCO= = ;(3)Q在C点的下方,BCQ=CMP,CM=,PM=4,BC=,或 ,CQ=或4,Q1(0,),Q2(0,-1).23、(1)32(人),25(人);(2);(3)乙同学,见解析.【解析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论