统计学方差分析教学指导与习题解答_第1页
统计学方差分析教学指导与习题解答_第2页
统计学方差分析教学指导与习题解答_第3页
统计学方差分析教学指导与习题解答_第4页
统计学方差分析教学指导与习题解答_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第八章方差分析本章介绍方差分析的理论、方法与运用。通过学习,要求:1.了解方差分析的基本概念和思想;2.理解方差分解原理;3.掌握单因素、双因素(有、无交互作用)方差分析的原理和流程;4学会针对资料提出原假设,并能利用Excel进行方差分析。n.课程内容要点第一节方差分析方法引导一、方差分析问题的提出方差分析,简称ANOVA analysis of variance ),就是利用试验观测值 总偏差的可分解性,将不同条件所引起的偏差与试验误差分解开来,按照一 定的规则进行比较,以确定条件偏差的影响程度以及相对大小。当已经确认 某几种因素对试验结果有显著影响时,可使用方差分析检验确定哪种因素对 试

2、验结果的影响最为显著及估计影响程度。二、方差分析的有关术语和概念.试验结果:在一项试验中用来衡量试验效果的特征量,也称 试验指100 标或指标,类似函数的因变量或者目标函数。.试验因素:试验中,凡是对试验指标可能产生影响的原因都称为因素,或称为因子,类似函数的自变量。 试验中需要考察的因素称为试验因素, 简称为因素。一般用大写字母A、日C ,表示。方差分析的目的就是分析实验因素对实验或抽样的结果有无显著影响。如果在实验中变化的因素只 有一个,这时的方差分析称为单因素方差分析;如果在实验中变化的因素不 止一个,这时的方差分析就称为多因素方差分析。.因素水平:因素在试验中所处的各种状态或者所取的不

3、同值,称为 该因素的水平,简称 水平。一般用下标区分。同样因素水平有时可以取得具 体的数量值,有时只能取到定性值(如好,中,差等) 。.交互作用:当方差分析过程中的影响因素不唯一时,这种多个因素的 不同水平的组合对指标的影响称为因素间的交互作用。三、方差分析的基本原理(一)方差分解原理一般地,试验结果的差异性可由 离差平方和 表示,离差平方和又可分解 为组间方差与组内方差。其中,组间方差为因素对试验结果的影响的加总; 组内方差则是各组内的随机影响的加总。如果组间方差明显高于组内方差, 说明样本数据波动的主要来源是组间方差,因素是引起波动的主要原因,则 认为因素对试验的结果存在显著的影响;否则认

4、为波动主要来自组内方差, 即因素对试验结果的影响不显著。(二)检验统计量检验因素影响是否显著的统计量是F统计量:组间方差/组间方差的自由度F =二::-:组内方差/组内方差的自由度101F统计量的值越大,说明组间方差是离差平方和的主要来源,因素影响显著;F统计量的值越小,说明组内方差是离差平方和的主要来源,因素影 响不显著。第二节 单因素方差分析、单因素条件下的平方和分解公式设Xj表示在A水平下,第j次试验的试验结果。 nXi. = Xijj 1r nX = 、 Xji 1 j 1Xi.Xi.nr按方差分解的原理可得ST = S a SeSa= x (Xi.-X)2 - n(Xi.-X)2Se

5、(Xj,.)2Sa为组间方差,由不同水平下的各组均值和总平均值的残差平方和;Se是组内方差,即各组试验结果和各组均值的残差平方和。二、因素作用显著性的检验若记各水平下的总体均值为一,2,川,.,则检验因素对试验结果影响的显著性就是检验假设:102Ho:广2=川=“匕:1,2,|儿,不全相等可直接构造F统计量来检验前面提出的假设,即统计量为:F =1A F r -1,r n -1OSAoSEsA - , SE =r -1r n -1F值越大,越说明组间方差大于组内方差,因此组间方差构成了离差平方和的主要来源,即因素的不同水平对试验结果影响较大,应拒绝原假设; 反之,说明组内方差是主要来源,应接受

6、原假设。对于给定的显著性水平 , 查F分布表得临界值Fa(r -1,r(n -1),当F aF时,拒绝原假设,认为 因素对总体有显著影响;当F Fa时,接受原假设,即因素对试验结果的影响不显著。为了方便分析,通常把方差分析列成一张方差分析表。差异源平方和自由度均方差F统计量组间Sar -1Saf=JaSe组内Ser (n -1)Se一总计Stnr -1一一三、应注意的问题(一)方差分析需满足的假设条件。(1)每次试验都是独立进行的;(2)各样本都是来自正态总体的;(3)各总体的方差是相等的。只有满足这些条件,方差分析的结果才是有效的。(二)在实际问题中,各水平下的总体的试验次数可以相等也可以不

7、等, 分析过程和结论基本不变。但是当试验次数相差较大或因素较多时应该考虑103采用广义线性模型分析,以消除非均衡试验设计的影响。(三)方差分析只能判断各总体的均值是否相等,而不能判断出哪个总 体的均值是大还是小,这时需要在均值不等的前提下,采用多重比较法进一 步比较各个均值的大小。第三节双因素方差分析一、无交互作用的双因素方差分析A与B是待确认是否对试验结果有显著影响的两个因素,假定A,B之间无交互作用,在两个因素的各种水平组合下进行重复试验可得表8-1。表8-1:无交互作用的双因素方差分析数据表因素B均值B1B2,BsA 因X11X12,X1sX1.方A2素X 21X22,X 2sX2.BA

8、,ArXr1Xr2,XrsXr.均值X.1X.2,X.sXX i. (i =,2,r )是在因素A的各个水平下s个试验结果的均值;X.j (j=1,2,s诞在因素B的各种水平下r个试验结果的均值。根据方差分 解原理可得:St = SaSbSe依次展开有104 TOC o 1-5 h z r s 20八 % Xj -Xi 4 jr s _ 2 r _Sa 八,Xi. -X 八 sXi.-Xi z1 j 4i 4r s2 sSb二二 X.j -X = r X.j -X HYPERLINK l bookmark42 o Current Document y j 注j 1r s_ 2&二 Xj - X

9、i.-Xj xi 1 j 3Sa表示的是因素A的各个水平下各组试验结果与该组均值的残差平方和,Sb是因素B的各个水平下各组试验结果与该组均值的残差平方和,Se是类似单因素方差分析A, B所有水平组合下的试验结果和均值的残差平方和。可知,St的自由度为rs -1 ,Sa的自由度为r -1 ,Sb的自由度为s-1 , Se的自由度为(r 1 %s1)。对应的均方差为:SaSbr -1SbsTSe =Ser-1 s-1检验因素A与B对试验结果的影响是否显著的F统计量分别为Fa =|aF r-1,(r-1)(s-1)Se_Sb_Fb =忑 F s-1,(r -1)(s-1) Se综合以上结论可以得到方

10、差分析表。105表8-2无交互作用的双因素方差分析表差异源平方和自由度均方差F统计量A因素Sar -1SaFA = Sa/ SEB因素Sbs-1SbFB = SB / SE误差Se(r-1 X)Se一总计Strs -1一一、有交互作用的双因素方差分析当因素之间存在交互作用时,为了区分随机误差和交互作用,需要在不 同的水平组合下进行重复试验。设在因素A与因素B每一个水平组合下等重 复的试验t次,得到表8-3。表8-3:有交互作用的双因素方差分析数据表因素BB1 vB2 v,Bs vX111X121X1s1X112X122X1s2Ama,aX 211X221X2s1内X212X222次至2A2ma

11、,a一素X,X:21Xrs1八21八22,X2AX r12Xr22Xrs2Arma,aXijk表示的是在水平臾京 (AB店第k次试验的试验结果。 仪亥组合下 的试验结果的均值为:-1 -X j. .Xijkt k =i进一步记:106_StXi. = JXijkst j1 k 1X.j.1rtX ijk_1 r s tXXijkrst i 1 j 1 k 1和无交互作用的方差分析类似,离差平方和可以分解为:其中St SASB . SAB . SESB107r s t_ 2ST;Xijk-Xi 1 j 3 k3一 - 2SA=sXi. -Xi 1sX.j.-Xj 1SAB 二t二三:Xij.-X

12、i. -X.j. XSE二Xjk -Xij.k 1交叉项SAB表示两个因素的取值水平组合下的试验结果产生的因素水平组合方差。ST、SA、SB、SAB和SE的自由度分别是rst 1、r 1、A r -1SBSb =- s - 1qSABSab 二(r -1)(s-1)Srs(t -1)则f统计量依次为SAFa =/F r-1,rs(t-1)SESFb 二 U F s-1,rs(t-1)SEFab T F (r-1)(s-1),rs(t-1)SE(r 一1 % s -1)和rs (t -1 )。可计算出均方差二SA总结以上结论可以得到方差分析表8-4。FabSAB表8-4:双因素等重复试验方差分析

13、表差异源平方和自由度均方差F统计量A因素SAr -1SaFA =Sa/SEB因素Sbs-1SbFb = Sb/Se交互作用SAB(r-Us-1)SABFab = Sab/ SE误差Sers(t -1)Se一总计Strst -1一一108m.考核知识点与考核要求一、方差分析的问题和基本概念i、识记:(1)方差分析的定义(2)实验因素的概念,因素水平的含义。2、领会:交互作用的含义。二、方差的分解和 F统计量的构造1、识记:(1)方差的分解;(2)检验统计量。2、领会:方差“自由度”的确定。三、单因素方差分析1、识记:(1)单因素方差分析的意义;(2)单因素条件下的离差平方和的分解;(3)各个方差

14、自由度的确定;(4) F统计量的构造。2、领会:(1)单因素条件下的数据结构;(2)方差分析中应注意的几个问题。3、应用:(1)单因素方差分析的应用;(2)利用Excel进行单因素方差分析。109四、双因素方差分析1、识记:(1)无交互作用下的离差平方和的分解,各个方差自由度的确定,检 验双因素影响是否显著的 F统计量的构造;(2)有交互作用下的离差平方和的分解,各个方差自由度的确定,检 验各因素影响和交互作用是否显著的F统计量的构造。2、领会:(1)无交互作用下方差分析的数据结构;(2)有交互作用下方差分析的数据结构。3、应用:(1)无交互作用条件下双因素方差分析的应用;(2)有交互作用条件

15、下的方差分析的应用;(3)利用Excel进行上述两种方差分析。IV.习题详解一、选择题1.B 2.D 3.C 4.B 5.B 6.B 7.A 8.C 9.ABCDE 10.ABCD 11.ABC12.BCE 13.ADE二、计算题1,解:这是一个等重复的单因素试验。由题意设来自四个不同供应商的柳钉破坏承受力的均值分别为此,为,,也。可以建立假设检验H 0 :收=也=也=,,Hi:,匕,匕-4不全相等。由Excel软110件的方差分析可以得到下表。表8-5Excel得到的方差分析表差异源平方和自由度均方差F值P值F临界值组间5708.67531902.8921.8625520.153414.37

16、7114组内36779.7361021.658一一一总计42488.3839一一一一由于p值= 0.15341 ,大于显著水平 a =0.01 ,所以认为供应商不会对柳钉的损坏承受力产生显著影响,应该接受原假设H0。各水平下的均值巴99 %的置信度下的置信区间为: -si - ,si!X itot/ 2 厂,Xi +ta /-2=即I7nvn )表8-5均值置信区间表供应商平均值置信区打下限置信区间上限A1489.700453.915525.485A2472.800440.516505.084A3464.000433.067494.933A4493.000460.806525.1942.解:由

17、题意设来自三条/、同线路的灯泡寿命均值分别为匕下2,匕。可以建立假设检验H0:Ni = N2=E, Hi:% 匕,匕不全相等。由Excel软件的方差分析可以得到下表。表8-6Excel得到的方差分析表差异源平方和自由度F值P值F临界值组间228.42114.22.92820.09216.927111组内4681239一一一总计696.414一一一一由于p值= 0.0921133,大于显著水平 a =0.01,所以认为线路不同不会对灯泡的寿命产生显著影响,应该接受原假设H0O各水平下的均值叫99 %的置信度下的置信区间为:sjnXi -t /2- , X i t-/2、n表8-7均值置信区间表线

18、路平均值置信区打下限置信区间上限A155.00041.42068.580A248.80035.34562.255A345.60034.17357.0273.解:根据题意设来自三个不同子公司的文员的报酬均值分别为卅2卅3。可以建立假设检验 H。: 9 =匕=E , H 1 : %匕下3不全相等。由Excel软件的方差分析可以得到下表。表8-8Excel得到的方差分析表差异源平方和自由度均方差F值P值F临界值组间17845.8128922.9043.9750.04293.739组内31429.13142244.938一一一总计49274.9416一一一一由于p值=0.0429481 ,小于显著水平

19、a =0.05,所以认为所属子公司不同会对文员的工作效率产生显著影响,应该拒绝原假设H0O各水平下的均值与95 %的置信度下的置信区间为:112Xi -ta/2, X i +ta/2 1= 即表8-9均值置信区间表子公司平均值置信区可下限置信区间上限A1A2A3223.800148.167158.500173.98390.670111.611273.617205.663205.3894.解:根据题意设来自未载客汽车和载客汽车的速度均值分别为4,口2。可以建立假设检验 H 0 : N1 = N2,H 1 :1,N2不全相等。由 Excel软件 的方差分析可以得到下表。表 8-10Excel得到的

20、方差分析表差异源平方和自由度均方差F值P值F临界值组间250.98331250.98333.3760.0815.871组内1487.0172074.35083一一一总计173821一一一一由于p值=0.081071 ,大于显著水平a =0.025,所以认为载客与否对汽车的速度不会产生显著影响,应该接受原假设H0O各水平下白均值997.5%的置信度下的置信区间为:i -Si- .Si: rr.X i -tot/ 2 n , X i + 3/2 -n 卜 即表8-11均值置信区间表载客与否平均值置信区打下限置信区间上限未载客63.70056.91756.917113载客 |56.917|50.95

21、0|62.884.解:设外包装因素为 a,产品地区因素为 P,由题意建立假设检验hi :口对销售量无显著影响 Hu ”对销售量有显著影响H02 : 口对销售量无显著影响H12 : P对销售量有显著影响可由Excel软件的方差分析直接得到以下方差分析表。表8-12 Excel得到的双因素无交互作用的方差分析表差异源平方和自由度均方差F值P值F临界值外包装74.13333237.0671.3210.3194.459地区191.0667447.7671.7020.2423.838误差224.5333828.067一一一总计489.733314一一一一因为外包装因素的 p值=0.31943,地区因素的p值=0.241868,都大于a =0.05 ,所以包装和地区这两个因素都对产品的销售量没有显著影 响。.解:设司机的驾驶技术因素为 a,路面环境因素为 P,由题意建立假设 检验储01 :口对耗油量无显著影响 H11 :口对耗油量有显著影响H02 : p对耗油量无显著影响H12 : P对耗油量有显著影响可由Exc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论