广东省韶关市名校2021-2022学年毕业升学考试模拟卷数学卷含解析_第1页
广东省韶关市名校2021-2022学年毕业升学考试模拟卷数学卷含解析_第2页
广东省韶关市名校2021-2022学年毕业升学考试模拟卷数学卷含解析_第3页
广东省韶关市名校2021-2022学年毕业升学考试模拟卷数学卷含解析_第4页
广东省韶关市名校2021-2022学年毕业升学考试模拟卷数学卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位

2、数分别是()A20,20B30,20C30,30D20,302一个圆锥的侧面积是12,它的底面半径是3,则它的母线长等于()A2 B3 C4 D63一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-74如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A0.7米B1.5米C2.2米D2.4米5下列各式中,计算正确的是 ( )ABCD6如图,在平面直角坐标系xOy中,由

3、绕点P旋转得到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)7在0,-2,5,-0.3中,负数的个数是( )A1B2C3D48不等式3xx-5的最小整数解是( )A3B2C1D29如图,ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4,30B2,60C1,30D3,6010在数轴上表示不等式组的解集,正确的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知P是线段AB的黄金分割点,且PAPB若S1

4、表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_S2.(填“”“=”“ ”)12如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为_13如图,扇形的半径为,圆心角为120,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 _ .14若关于x的方程x2-x+sin=0有两个相等的实数根,则锐角的度数为_15如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则_16不等式组的最小整数解是_三、解答题(共8题,共72分)17(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将

5、调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:()该教师调查的总人数为 ,图中的m值为 ;()求样本中分数值的平均数、众数和中位数18(8分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图所示的试验,并根据试验数据绘制出图所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升? 图 图19(8分)如图,经过原点的抛物线y=x2+2mx(m0)与x轴的

6、另一个交点为A,过点P(1,m)作直线PAx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP(I)当m=3时,求点A的坐标及BC的长;(II)当m1时,连接CA,若CACP,求m的值;(III)过点P作PEPC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标20(8分)先化简:(),再从2,1,0,1这四个数中选择一个合适的数代入求值21(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底

7、部支架HE与支架AF所成的角FHE=45,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)22(10分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好此时,路灯的灯柱AB的高应该设计为多少米(结果保留根号)23(12分)解方程:1+24在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30时,判断线段BE与DE之间的数

8、量关系,并加以证明;(3)若0MAC120,当线段DE2BE时,直接写出MAC的度数.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握2、C【解析】设母线长为R,底面半径是3cm,则底面周长=6,侧面积=3R=12,R=4cm故选C3、C【解析】根据因式分解法直接求解即可得【详解】(x+3

9、)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.4、C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选C【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5、C【解析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【详解】A、无法计算,故

10、此选项错误;B、a2a3=a5,故此选项错误;C、a3a2=a,正确;D、(a2b)2=a4b2,故此选项错误故选C【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键6、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化旋转.7、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1故选B

11、8、B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】3xx-5,3x-x-5,x-52,不等式3xx-5的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.9、B【解析】试题分析:B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60,BB=64=2,平移的距离和旋转角的度数

12、分别为:2,60故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定10、C【解析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1x0得x1,解2x40得x2,所以不等式的解集为1x2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、=【解析】黄金分割点,二次根式化简【详解】设AB=1,由P是线段AB的黄金分割点,且PAPB,根据黄金分割点的,AP=,BP=S1=S112、1【解析】根据题意,可以求得B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长

13、【详解】在RtABC中,CM平分ACB交AB于点M,过点M作MNBC交AC于点N,且MN平分AMC,AMN=NMC=B,NCM=BCM=NMC,ACB=2B,NM=NC,B=30,AN=1,MN=2,AC=AN+NC=3,BC=1,故答案为1【点睛】本题考查含30角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答13、4cm【解析】求出扇形的弧长,除以2即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可【详解】扇形的弧长=4,圆锥的底面半径为42=2,故圆锥的高为:=4,故答案为4cm【点睛】本题考查了圆锥的计算,重

14、点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长14、30【解析】试题解析:关于x的方程有两个相等的实数根, 解得: 锐角的度数为30;故答案为3015、【解析】试题分析:四边形ABCD与四边形EFGH位似,位似中心点是点O,则 故答案为点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键16、-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案详解: .解不等式得:x-3,解不等式得:x1,不等式组的解集为-3x1,不等式组的最小整数解是-1,故答案为:-1点睛:本题考查了解一元一次不等式组和不等式组

15、的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键三、解答题(共8题,共72分)17、()25、40;()平均数为68.2分,众数为75分,中位数为75分【解析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】()该教师调查的总人数为(2+3)20%=25(人),m%=100%=40%,即m=40,故答案为:25、40;()由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为(分),众数为75分,中位数为第13个数据,即7

16、5分【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.18、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为Wkt0.3. 又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k0.30.9,解得k0.4.故W与t之间的函数关系式为W0.4t0.3.当t24时,W0.4240.39.9(L),9.90.39

17、.6(L),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.19、(I)4;(II) (III)(2,0)或(0,4)【解析】(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如图,利用PMECBP得到PM=BC=

18、2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PHy轴于H,如图,利用PHEPBC得到PH=PB=m-1,HE=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE得到E点坐标【详解】解:(I)当m=3时,抛物线解析式为y=x2+6x,当y=0时,x2+6x=0,解得x1=0,x2=6,则A(6,0),抛物线的对称轴为直线x=3,P(1,3),B(1,5),点B关于抛物线对称轴的对称点为CC(5,5),BC=51=4;(II)当y=0时,x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),B(1,2

19、m1),点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,C(2m1,2m1),PCPA,PC2+AC2=PA2,(2m2)2+(m1)2+12+(2m1)2=(2m1)2+m2,整理得2m25m+3=0,解得m1=1,m2=,即m的值为;(III)如图,PEPC,PE=PC,PMECBP,PM=BC=2m2,ME=BP=2m1m=m1,而P(1,m)2m2=m,解得m=2,ME=m1=1,E(2,0);作PHy轴于H,如图,易得PHEPBC,PH=PB=m1,HE=BC=2m2,而P(1,m)m1=1,解得m=2,HE=2m2=2,E(0,4);综上所述,m的值为2,点E的坐标

20、为(2,0)或(0,4)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式20、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键21、3.05米【解析】延长FE交CB的延长线于M, 过A作AGFM于G, 解直角三角形即可得到正确结论【详解】解:如图:延长FE交CB的延长线于M,过

21、A作AGFM于G,在RtABC中,tanACB=,AB=BCtan60=1.51.73=2.595,GM=AB=2.595,在RtAGF中,FAG=FHE=45,sinFAG=,sin45=,FG=1.76,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键22、 (104)米【解析】延长OC,AB交于点P,PCBPAO,根据相似三角形对应边比例相等的性质即可解题【详解】解:如图,延长OC,AB交于点PABC=120,PBC=60,OCB=A=90,P=30,AD=20米,OA=AD=10米,BC=2米,在RtCPB中,PC=BCtan60=米,PB=2BC=4米,P=P,PCB=A=90,PCBPAO,PA=米,AB=PAPB=()米答:路灯的灯柱AB高应该设计为()米23、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论