第12章 自然对流边界层-皮冬_第1页
第12章 自然对流边界层-皮冬_第2页
第12章 自然对流边界层-皮冬_第3页
第12章 自然对流边界层-皮冬_第4页
第12章 自然对流边界层-皮冬_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十二章 自由对流边界层指导老师:程晓舫教授小组成员:皮冬, 刘丰收, 周涛涛, 宋澜波, 吴昊, 杜志杰, 张赣, 胡磊: 本章内容自然对流的概念自然对流边界层方程组相似性讨论等温垂直平板层流自然对流相似解本章小结: 自然对流的概念在重力场、离心力场或其他力场的作用下,由于流体的温度差或(和)浓度差形成密度差和浮升力,使流体产生流动的现象称为自然对流。自然对流中属于作用在密度梯度上的体积力引起的一种浮力诱发运动,它不同于强迫对流,因此在描述自由对流边界层的微分方程时,特别不能把密度这个物性定义为常数。 : 自然对流边界层方程组质量方程含有质量方程的动量方程形式为含有质量方程、动量方程的能量方

2、程形式为: 自然对流边界层方程组 考虑由浮力驱动的层流边界层流动,假设二维、稳态、无内热源、重力作用在负x方向; 动量方程中体积力不能忽略,体积力可表示为 ; 与强迫对流边界层方程相比的差异在于:密度是变化的,且表现为温度的函数; 由于流速不高,故而可以忽略能量方程中粘性耗散项的影响。 浮力的影响仅限于动量方程!压力梯度项 在动量方程中被保留,但在能量方程中却被忽略。 考虑上述理由,在定常、变物性(密度)、无内热源条件下二维自然对流边界层三方程如下所示:质量方程:动量方程:能量方程:自然对流边界层方程组: 自然对流边界层方程组对上述边界层方程作进一步处理 关于动量方程中的压力梯度项:压力梯度可

3、根据边界层外势流区求得,由于自然对流边界层外的流体是静止的,于是由流体静力学可知: 其中 为势流区流体的密度。因此动量方程中的压力项和体积力项可合并成 ,即单位容积流体的浮升力。 如果密度变化只是(或主要)由温度变化引起的,由容积热膨胀系数的定义Boussinesq近似: 为了对边界层方程式进一步简化,引入自然对流中的Boussinesq假定,主要包含以下两方面的内容:(1)密度变化对流体动力学的影响只通过动量方程中的重力项来完成。各方程其他项中出现的密度都假定是常数,且等于 。(2)介质热物性 的变化对流场的影响不大,可以假定是常数。自然对流边界层方程组于是关于自然对流边界层三方程的最终形式

4、如下: 自然对流边界层方程组质量方程:动量方程:能量方程:其中运动粘性系数 ,导温系数: 相似性讨论 同受迫对流一样,对控制方程无量纲化可求得自然对流流动和传热的无量纲参数。引入浮力的直接结果令: 相似性讨论习惯上把雷诺数的平方定义为格拉晓夫数格拉晓夫数表征自然对流状态下浮升力与粘性力的比值, 雷诺数 表征受迫对流状态下惯性力与粘性力的比值。格拉晓夫数(准确地说是 )在自然对流过程中的作用相当于雷诺数 在受迫对流过程中的作用,其大小能确定边界层的流动状态。: 等温竖壁层流边界层方程组的自相似性解垂直等温表面层流自然对流图1 热的垂直平板上边界层的发展在求解过程中要引入以下形式的相似参数进行变量

5、代换其中,: 垂直等温表面层流自然对流为了达到分离变量的目的,以定义如下的流函数表示速度分量其中 , x速度分量y速度分量无量纲温度: 垂直等温表面层流自然对流, : 垂直等温表面层流自然对流, 动量方程能量方程: 垂直等温表面层流自然对流, : 垂直等温表面层流自然对流, : 垂直等温表面层流自然对流, 非线性常微分方程无穷大的边界条件不好处理上述常微分方程组没有解析解,只能获得数值解。: 垂直等温表面层流自然对流, 无量纲速度分布: 垂直等温表面层流自然对流, 无量纲温度分布: 垂直等温表面层流自然对流, 根据相似性参数的定义,从上图中可以确定对应于任意x和y值的u和t的值。同时,上图还可

6、以用于推导合适的传热关系式。于是,局部自然对流的换热系数和努谢尔特数分别为:由导热的傅立叶定律得壁面热流: 垂直等温表面层流自然对流, 微分精确解:积分精确解:受迫对流微分精确解: 湍流的影响*, 自然对流边界层不局限于层流,同受迫对流一样,其中也可能发生流体力学不稳定性,即可能出现从层流向湍流的过渡,其与流体浮力和粘性力的相对大小有关,习惯上用瑞利数(Raleigh number)表示过渡发生的条件。对于垂直平板,临界瑞利数为适用于湍流的关系式主要依靠实验结果获得: 本章小节, 1.对流的驱动力有两类:来自于流体外部力的驱动,这类 对流称为受迫对流;来自于流体内部力的驱动,这类对 流称为自然对流。2.在自然对流微分方程的表达中,体积力不可忽略,并且密度必须考虑为变物性。3.在自然对流微分方程组的处理中,作为变物性的密度仅仅在动量方程中予以考虑,在质量方程和能量方程中作为常物性来考虑。4.对自然对流现象,相似性解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论