版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Newtons Second Law:Body Forces: Gravity, Magnetic Fields, etc.Surface Forces: Pressure and Shear StressesF are the forces acting on the fluid particle. m is the mass of a fluid particle, and a is the acceleration of the fluid particle.If a flow is inviscid, it has zero viscosity.Inviscid Flow:Possib
2、le Forces, F : Body Forces and Surface ForcesConservation of Linear Momentum :Let P = linear momentum,Applying the differential form,Then,Body Forces:Surface Forces:Normal Stress:Shear Stress:Then the total forces:Looking at the various sides of the differential element, the shear and normal stresse
3、s are shown for an x-face.In components:Material derivative for aForce Terms(1)For x-component,Divide by(x direction)Viscosity effects for a Newtonian FluidNormal Stresses:Shear Stresses:(1) Navier-Stokes EqnViscous Flows: Navier-Stokes EquationsFrench Mathematician, L. M. H. Navier (1758-1836) and
4、English Mathematician Sir G. G. Stokes (1819-1903) formulated the Navier-Stokes Equations by including viscous effects in the equations of motion. L. M. H. Navier (1758-1836)Sir G. G. Stokes (1819-1903)Local AccelerationAdvective Acceleration(non-linear terms)Pressure termWeight termViscous termsTer
5、ms in the x-direction:Inviscid Flow : An inviscid flow is a flow in which viscosity effects or shearing effects become negligible.The equations of motion for this type of flow then becomes the following:Eulers Equations ;In vector notation Eulers Equation:Inviscid Flow: Eulers EquationsLeonhard Eule
6、r(1707 1783)Famous Swiss mathematician who pioneered work on the relationship between pressure and flow.There is no general method of solving these equations for an analytical solution.The Eulers equation, for special situations can lead to some useful information about inviscid flow fields. Invisci
7、d Flow: Bernoulli EquationFrom the Euler Equation,First, assume steady state:Select, the vertical direction as “up”, opposite gravity:Use the vector identity:Now, rewriting the Euler Equation:Rearrange:Now, take the dot product with the differential length ds along a streamline:ds and V are parralle
8、l, is perpendicular to V, and thus to ds.We note, Now, combining the terms:Integrate:Then,1) Inviscid flow2) Steady flow3) Incompressible flow4) Along a streamlinepdBernoullis Equation:Daniel Bernoulli(1700-1782)Swiss mathematician, son of Johann Bernoulli, who showed that as the velocity of a fluid
9、 increases, the pressure decreases, a statement known as the Bernoulli principle. He won the annual prize of the French Academy ten times for work on vibrating strings, ocean tides, and the kinetic theory of gases. For one of these victories, he was ejected from his jealous fathers house, as his fat
10、her had also submitted an entry for the prize. His kinetic theory proposed that the properties of a gas could be explained by the motions of its particles. Bernoulli Equation := H (total head) = constantPressureHeadVelocityHeadPotentialHead* LStatic PressureVelocity(Dynamic) PressureHydrostatic Pres
11、sure F/L2 (work)FL/L3=Total pressure = constant = (energy grade line) p. 212 4-18 = (hydraulic grade line)= Em =Total energy( ) = constantStatic energyKineticenergyPotential energyModified Bernoulli Equation : real fluid(:head loss)(:pressure loss)(:energy loss)Application of Bernoulli Equation: Fre
12、e JetsBernoulli Equation for along a streamline between any two points:Free Jets:Following the streamline between (1) and (2):0 gage0 gage0h0 Torricellis Equation (1643):Velocity at (5):()()Cv=coefficient of velocityQ()=AVFlow Rate Measurement through OrificeFlowrate Measurements in Pipes :Using continuity equation:So, if we measure the pressure difference between (1) and (2) we have the flow rate.Z1=Z2 VenturiOrificeA2A1A0P1P2Then, Qactual= AVactual Follow a Streamline from point 1 to 2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设钢材供货合同范例
- 研发耗材购销合同范例
- 商贸材料合同范本
- 建筑工程抹灰施工合同(2024版)
- 2024年度吊车设备报废回收合同2篇
- 2024年度二手房自行车库所有权转移合同3篇
- 公司收购合同范本
- 盘扣式脚手架租赁服务合同(二零二四年度)
- 抵押电脑合同范本
- 设计质询合同范本
- 旅游景区管理制度完整汇编
- 小学语文人教三年级上册第六组-2《奇妙的中心句》群文阅读教学设计
- 汽车冲压焊接总成项目可行性研究报告
- 旅游地理学课程《旅游地理学》教学大纲
- 工程机械设备保险附加第三者责任保险条款
- 第五章《中国的地理差异》导学案
- GB∕T 41098-2021 起重机 安全 起重吊具
- 饥荒修改大全
- 入瞳出瞳与光阑的位置
- 六年级上册数学圆中方方中圆经典题练习
- 危重患者的护理常规PPT课件
评论
0/150
提交评论