版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第7章 MATLAB解方程与函数极值7.1 线性方程组求解7.2 非线性方程数值求解7.3 常微分方程初值问题的数值解法7.4 函数极值第1页,共42页。7.1 线性方程组求解7.1.1 直接解法1利用左除运算符的直接解法 对于线性方程组Ax=b,可以利用左除运算符“”求解: x=Ab第2页,共42页。例7-1 用直接解法求解下列线性方程组命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;x=Ab第3页,共42页。2利用矩阵的分解求解线性方程组矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有LU
2、分解、QR分解、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。第4页,共42页。(1) LU分解矩阵的LU分解就是将一个矩阵表示为一个单位下三角矩阵和一个上三角矩阵的乘积形式。只要方阵A是非奇异的,LU分解总是可以进行的。L,U=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。L,U,P=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。第5页,共42页。例7-2 用LU分解求解例7-1中的线性方程组。命令如下:A=2,1,-5,1
3、;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;L,U=lu(A);x=U(Lb)或采用LU分解的第2种格式,命令如下:L,U ,P=lu(A);x=U(LP*b)第6页,共42页。 (2) QR分解对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。Q,R=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。Q,R,E=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。实现QR分解后,线性方程组Ax=b的解x=R(Qb)或x=E(R(Qb)。第7
4、页,共42页。例7-3 用QR分解求解例7-1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;Q,R=qr(A);x=R(Qb)或采用QR分解的第2种格式,命令如下:Q,R,E=qr(A);x=E*(R(Qb)第8页,共42页。 (3) Cholesky分解 如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=RR。 R=chol(X):产生一个上三角阵R,使RR=X。若X为非对称正定,则输出一个出错信息。 R,p=chol(X
5、):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足RR=X(1:q,1:q)。 第9页,共42页。例7-4 用Cholesky分解求解例7-1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;R=chol(A)? Error using = cholMatrix must be positive definite命令执行时,出现错误信息,说明A为非正定矩阵。第10页,共42页。7.1.2 迭代解法
6、 迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。1Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii0(i=1,2,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为: x(k+1)=D-1(L+U)x(k)+D-1b 这就是Jacobi迭代公式。如果序列x(k+1)收敛于x,则x必是方程Ax=b的解。第11页,共42页。Jacobi迭代法
7、的MATLAB函数文件Jacobi.m如下:function y,n=jacobi(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y; y=B*x0+f; n=n+1;end第12页,共42页。例7-5 用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。在命令中调用函数文件Jacobi.m,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=jacobi(A,b,0,0,0,1.0e-6)第13页,共42页。2Gauss-Serdel迭代法 在Jacobi迭代过程中,计
8、算时,已经得到,不必再用,即原来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到: x(k+1)=(D-L)-1Ux(k)+(D-L)-1b 该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel迭代用新分量代替旧分量,精度会高些。第14页,共42页。Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:function y,n=gauseidel(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y; y=
9、G*x0+f; n=n+1;end第15页,共42页。例7-6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。在命令中调用函数文件gauseidel.m,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=gauseidel(A,b,0,0,0,1.0e-6)第16页,共42页。例7-7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性方程组,看是否收敛。命令如下:a=1,2,-2;1,1,1;2,2,1;b=9;7;6;x,n=jacobi(a,b,0;0;0)x,n=gauseidel(a,b,
10、0;0;0)第17页,共42页。7.2 非线性方程数值求解7.2.1 单变量非线性方程求解 z=fzero(fname,x0,tol,trace) 其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。第18页,共42页。 例7-8 求f(x)=x-10 x+2=0在x0=0.5附近的根。 步骤如下: (1) 建立函数文件funx.m。 function fx=funx(x) fx=x-10.
11、x+2; (2) 调用fzero函数求根。 z=fzero(funx,0.5) z = 0.3758第19页,共42页。7.2.2 非线性方程组的求解 X=fsolve(fun,X0,option) 其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中off为不显示,iter表示每步都显示,final只显示最终结果
12、。 optimset(Display,off) 将设定Display选项为off。第20页,共42页。 例7-9 求下列非线性方程组在(0.5,0.5) 附近的数值解。 (1) 建立函数文件myfun.m。function q=myfun(p)x=p(1);y=p(2);q(1)=x-0.6*sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y); (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。x=fsolve(myfun,0.5,0.5,optimset(Display,off)x = 0.6354 0.3734第21
13、页,共42页。将求得的解代回原方程,可以检验结果是否正确,命令如下:q=myfun(x)q = 1.0e-009 * 0.2375 0.2957 可见得到了较高精度的结果。第22页,共42页。7.3 常微分方程初值问题的数值解法7.3.1 龙格库塔法简介7.3.2 龙格库塔法的实现 基于龙格库塔法,MATLAB提供了求常微分方程数值解的函数,一般调用格式为: t,y=ode23(fname,tspan,y0) t,y=ode45(fname,tspan,y0)其中fname是定义f(t,y)的函数文件名,该函数文件必须返回一个列向量。tspan形式为t0,tf,表示求解区间。y0是初始状态列向
14、量。t和y分别给出时间向量和相应的状态向量。第23页,共42页。例7-10 设有初值问题试求其数值解,并与精确解相比较(精确解为y(t)=)。 (1) 建立函数文件funt.m。function yp=funt(t,y)yp=(y2-t-2)/4/(t+1);(2) 求解微分方程。t0=0;tf=10;y0=2;t,y=ode23(funt,t0,tf,y0); %求数值解y1=sqrt(t+1)+1; %求精确解tyY1%y为数值解,y1为精确值,显然两者近似。第24页,共42页。例7-11 求解著名的Van der Pol方程 。选状态变量:状态方程:例7-12 有Lorenz模型的状态方
15、程,取 试绘制系统相平面图。第25页,共42页。 7.4 函数极值 MATLAB提供了基于单纯形算法求解函数极值的函数fmin和fmins,它们分别用于单变量函数和多变量函数的最小值,其调用格式为: x=fminbnd(fname,x1,x2) x=fminsearch(fname,x0) fminbnd函数用于求单变量函数的最小值点。fname是被最小化的目标函数名,x1和x2限定自变量的取值范围。fminsearch函数用于求多变量函数的最小值点,x0是求解的初始值向量。第26页,共42页。 MATLAB没有专门提供求函数最大值的函数,但只要注意到-f(x)在区间(a,b)上的最小值就是f
16、(x)在(a,b)的最大值,所以fminbnd(f,x1,x2)返回函数f(x)在区间(x1,x2)上的最大值。第27页,共42页。 例7-13 求f(x)=x3-2x-5在0,5内的最小值点。 (1) 建立函数文件mymin.m。function fx=mymin(x)fx=x.3-2*x-5; (2) 调用fmin函数求最小值点。x=fmin(mymin,0,5)x= 0.8165第28页,共42页。第8章 MATLAB数值积分与微分8.1 数值积分8.2 数值微分第29页,共42页。 8.1 数值积分8.1.1 数值积分基本原理 基本思想:将整个积分区间a,b分成n个子区间xi,xi+1
17、,i=1,2,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题 而每个小的子区间上的定积分的值可以近似通过梯形攻势等近似求得,这样的求积方法称为数值求技。 第30页,共42页。8.1.2 数值积分的实现方法1变步长辛普生法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: I,n=quad(fname,a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即
18、定积分值,n为被积函数的调用次数。第31页,共42页。 例8-1 求定积分 。 (1) 建立被积函数文件fesin.m。function f=fesin(x)f=exp(-0.5*x).*sin(x+pi/6); (2) 调用数值积分函数quad求定积分。S,n=quad(fesin,0,3*pi)S = 0.9008n = 77第32页,共42页。2牛顿柯特斯法 基于牛顿柯特斯法,MATLAB给出了quad8函数来求定积分。该函数的调用格式为: I,n=quad8(fname,a,b,tol,trace) 其中参数的含义和quad函数相似,只是tol的缺省值取10-6。该函数可以更精确地求出
19、定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。第33页,共42页。例8-2 求定积分 。(1) 被积函数文件fx.m。function f=fx(x)f=x.*sin(x)./(1+cos(x).*cos(x);(2) 调用函数quad8求定积分。I=quad8(fx,0,pi)I = 2.4674第34页,共42页。例8-3 分别用quad函数和quad8函数求定积分的近似值,并比较函数的调用次数。调用函数quad求定积分:format long;fx=inline(exp(-x);I,n=quad(fx,1,2.5,1e-10)I =
20、 0.28579444254766n = 65第35页,共42页。 调用函数quad8求定积分:format long;fx=inline(exp(-x);I,n=quad8(fx,1,2.5,1e-10)I = 0.28579444254754n = 33第36页,共42页。3被积函数由一个表格定义 在MATLAB中,对由表格形式定义的函数关系的求定积分问题用trapz(X,Y)函数。其中向量X,Y定义函数关系Y=f(X)。例8-4 用trapz函数计算定积分 。命令如下:X=1:0.01:2.5;Y=exp(-X); %生成函数关系数据向量trapz(X,Y)ans = 0.2857968
21、2416393第37页,共42页。8.1.3 二重定积分的数值求解 调用格式为: I=dblquad(f,a,b,c,d,tol,trace) 该函数求f(x,y)在a,bc,d区域上的二重定积分。参数tol,trace的用法与函数quad完全相同。第38页,共42页。例8-5 计算二重定积分(1) 建立一个函数文件fxy.m:function f=fxy(x,y)global ki;ki=ki+1; %ki用于统计被积函数的调用次数f=exp(-x.2/2).*sin(x.2+y);(2) 调用dblquad函数求解。global ki;ki=0;I=dblquad(fxy,-2,2,-1,1)kiI = 1.57449318974494ki = 1038第39页,共42页。8.2 数值微分8.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024商铺产权买卖协议书及装修工程监理合同3篇
- 2024全新环保产业应收账款保理业务协议书3篇
- 2024年度新型建筑材料采购施工联合体合作协议书2篇
- 2024年校园绿化工程苗木合同
- 2025房屋装修合同样本
- 城市配送货车租赁合同模板
- 2024年海上危险品运输法律义务及服务协议范本版B版
- 2024年新型建筑工程施工合作合同样本一
- 《脊髓损伤的护理》课件
- 火锅店服务员招聘合同
- 应用写作-终结性考核-国开(SC)-参考资料
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 同步课件1:新时代中国特色社会主义的伟大成就
- 世界舞台上的中华文明智慧树知到期末考试答案章节答案2024年重庆大学
- 学校2024-2025年工作计划
- 人文英语4写作
- 广东佛山生育保险待遇申请表
- 家长会家校沟通主题班会
- PPP跟踪审计方案
- 等比数列的前n项和PPT课件
- 120-1阀讲义(完整版)
评论
0/150
提交评论