版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularization isthemostcommonlyusedmethodof of named for.In,themethodisalsoknownasridgeregression .Itisrelatedtothe forproblems.Thestandardapproachtosolveanof givenasAx - b,isknownas andseekstominimizetheAx 一 b 2where isthe.However,them
2、atrix maybe or yieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax - b 2 + lirxll2forsomesuitablychosen Tikhonovmatrix, r .Inmanycases,thismatrixis chosenasther = givingpreferencetosolutionswithsmallerno
3、rms.Inothercases, operators.,a oraweighted)maybeusedtoenforcesmoothnessifthe underlyingvectorisbelievedtobemostlycontinuous.Thisregularization improvestheconditioningoftheproblem,thusenablinganumericalsolution.An explicitsolution,denotedby r,isgivenby:x AtA + r T)1 ATbTheeffectofregularizationmaybev
4、ariedviathescaleofmatrix .For aI,when a=Othisreducestotheunregularizedleastsquaressolutionprovided that(A TA)-iexists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylook artificial,andindeedthematrix r seemsratherarbitrary,theprocesscanbe justifiedfroma
5、.Notethatforanill-posedproblemonemustnecessarily introducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethat weknowthat isarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentis independentwithx.Ourdataisalsosubjecttoerrors,andwetaketheerr
6、orsin 力tobealsowithzeromeanandstandarddeviation.UndertheseassumptionstheTikhonov-regularizedsolutionisthe solutiongiventhedataandtheaprioridistributionof ,accordingto.TheTikhonovmatrixisthenr = a/forTikhonovfactor a= b / xIftheassumptionof isreplacedbyassumptionsof anduncorrelatednessof, andstillass
7、umezeromean,thenthe entailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsfor xandthedataerror,onecan applyatransformationofthevariablestoreducetothecaseabove.Equivalently, onecanseekan xtominimizeAx - b2 +X 一 Xp02wherewehaveused|x|2 tostandforthew
8、eightednormBayesianinterpretation Pistheinverseof b, XistheXTFx(cf.the).Inthe ofx,and Qistheinversecovariancematrixof X.TheTikhonovmatrixisthengivenasa factorizationofthematrix Q= r t.the),andisconsidereda.AtPA +Q)1 AtP(b - Ax0)ThisgeneralizedproblemcanbesolvedexplicitlyusingtheformulaQRegularizatio
9、ninHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,and onecanformulateTikhonovregularizationintheoriginalinfinitedimensional context.Intheabovewecaninterpret &sa on,and xand baselementsinthedomainandrangeof .Theoperator A*A + rtr isthenabounded invertibleoperator.R
10、elationtosingularvaluedecompositionandWienerfilterWith r =a thisleastsquaressolutioncanbeanalyzedinaspecialwayvia the.GiventhesingularvaluedecompositionofAA = UYVtwithsingularvalues theTikhonovregularizedsolutioncanbeexpressedas = VDUrbwhere hasdiagonalvaluesandiszeroelsewhere.Thisdemonstratestheeff
11、ectoftheTikhonovparameter onthe oftheregularizedproblem.Forthegeneralizedcaseasimilar representationcanbederivedusinga.Finally,itisrelatedtothe:wheretheWienerweightsaref = !and Qistheof A.iDetermination of the Tikhonov factorTheoptimalregularizationparameter aisusuallyunknownandofteninpracticalprobl
12、emsisdeterminedbyanadhocmethod.Apossibleapproach reliesontheBayesianinterpretationdescribedabove.Otherapproachesinclude the, and. provedthattheoptimalparameter,inthesenseof minimizes: where H S Sisthe and Tistheeffectivenumber.八 RSSG =T 2XfcXTTXTUsingthepreviousSVDdecomposition,wecansimplifytheabove
13、expression:andRSS =i=1RSS=RSS0i=1b 2 + a 2 i ii=1it= m-E, E a 2 .b2 +a2 = m q + ZjbTZOIi=1 ii=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofan introduces(whenalluncertaintiesareGaussian)acovariancematrix representingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrix
14、 Drepresentingtheuncertaintieson theobservedparameters(see,forinstance,Tarantola,2004).Inthespecialcase whenthesetwomatricesarediagonalandisotropic, .:/and :,and,inthiscase,theequationsofinversetheoryreducetothe equationsabove,with a= D / M.HistoryTikhonovregularizationhasbeeninventedindependentlyin
15、manydifferent contexts.Itbecamewidelyknownfromitsapplicationtointegralequationsfrom theworkof andD.L.Phillips.Someauthorsusetheterm Tikhonov-Phillips regularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,who tookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa- filter.Followin
16、gHoerl,itisknowninthestatisticalliteratureas ridge regression.QReferences(1943).O6ycTO访quBOCTuo6paTHbix3agaqOnthestabilityofinverse problems. 39(5):195 -198.Tychonoff,A.N.(1963). OpemeHuuHeKoppeKTHonocraB刀eHHbix3agaq uMeTogepery刀月pu3auuuSolutionofincorrectlyformulatedproblems andtheregularizationmet
17、hod. DokladyAkademiiNaukSSSR 151: 501-504.Translatedin SovietMathematics 4:1035 -1038.Tychonoff,A.N.;V.Y.Arsenin(1977). Solutionoflll-posedProblems . Washington:Winston&Sons. .Hansen,.,1998, Rank-deficientandDiscreteill-posedproblems ,SIAMHoerlAE,1962, Applicationofridgeanalysistoregressionproblems , ChemicalEngineeringProgress,58,54-59.FosterM,1961, AnapplicationoftheWiener-Kolmogorovsmoothing theorytomatrixinversion J.SIAM,9,387-392PhillipsDL,1962
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具产品售后服务方案范本
- 个人商业计划书完整版5篇
- 美丽的小兴安岭课件
- 地理自然特征与农业一草原和荒漠新
- pep六年级下册课件
- 项目部安全管理人员安全培训试题附下载答案可打印
- 【互动宝宝资源中心】幼儿园主题教案:秋天主题活动设计
- 生产经营负责人安全培训试题附答案(典型题)
- 公司项目负责人安全培训试题及参考答案(综合卷)
- 厂里安全培训试题【模拟题】
- 中国消费名品申报书;“数字三品”应用场景典型案例申报书
- 小学语文一年级上册《秋天》评课稿
- 第三单元(单元测试)-2024-2025学年四年级上册数学人教版
- 沪教版四年级上册期中复习数学试卷(一)
- TWSJD 66-2024 放射工作人员职业健康检查技术指南
- 液压上料机械手设计设计说明书
- 中医内科学重点知识
- 唐山市2024-2025学年度高三年级摸底演练 语文试卷(含答案)
- 部编版四年级上册《第5单元 习作例文:我家的杏熟了 小木船》课件
- 2023年四川省绵阳市游仙区东辰国际学校小升初数学试卷
- 2024年天津中煤进出口限公司招聘电力及新能源专业人才(高频重点提升专题训练)共500题附带答案详解
评论
0/150
提交评论