Tikhonov吉洪诺夫正则化_第1页
Tikhonov吉洪诺夫正则化_第2页
Tikhonov吉洪诺夫正则化_第3页
Tikhonov吉洪诺夫正则化_第4页
Tikhonov吉洪诺夫正则化_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularization isthemostcommonlyusedmethodof of named for.In,themethodisalsoknownasridgeregression .Itisrelatedtothe forproblems.Thestandardapproachtosolveanof givenasAx - b,isknownas andseekstominimizetheAx 一 b 2where isthe.However,them

2、atrix maybe or yieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax - b 2 + lirxll2forsomesuitablychosen Tikhonovmatrix, r .Inmanycases,thismatrixis chosenasther = givingpreferencetosolutionswithsmallerno

3、rms.Inothercases, operators.,a oraweighted)maybeusedtoenforcesmoothnessifthe underlyingvectorisbelievedtobemostlycontinuous.Thisregularization improvestheconditioningoftheproblem,thusenablinganumericalsolution.An explicitsolution,denotedby r,isgivenby:x AtA + r T)1 ATbTheeffectofregularizationmaybev

4、ariedviathescaleofmatrix .For aI,when a=Othisreducestotheunregularizedleastsquaressolutionprovided that(A TA)-iexists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylook artificial,andindeedthematrix r seemsratherarbitrary,theprocesscanbe justifiedfroma

5、.Notethatforanill-posedproblemonemustnecessarily introducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethat weknowthat isarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentis independentwithx.Ourdataisalsosubjecttoerrors,andwetaketheerr

6、orsin 力tobealsowithzeromeanandstandarddeviation.UndertheseassumptionstheTikhonov-regularizedsolutionisthe solutiongiventhedataandtheaprioridistributionof ,accordingto.TheTikhonovmatrixisthenr = a/forTikhonovfactor a= b / xIftheassumptionof isreplacedbyassumptionsof anduncorrelatednessof, andstillass

7、umezeromean,thenthe entailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsfor xandthedataerror,onecan applyatransformationofthevariablestoreducetothecaseabove.Equivalently, onecanseekan xtominimizeAx - b2 +X 一 Xp02wherewehaveused|x|2 tostandforthew

8、eightednormBayesianinterpretation Pistheinverseof b, XistheXTFx(cf.the).Inthe ofx,and Qistheinversecovariancematrixof X.TheTikhonovmatrixisthengivenasa factorizationofthematrix Q= r t.the),andisconsidereda.AtPA +Q)1 AtP(b - Ax0)ThisgeneralizedproblemcanbesolvedexplicitlyusingtheformulaQRegularizatio

9、ninHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,and onecanformulateTikhonovregularizationintheoriginalinfinitedimensional context.Intheabovewecaninterpret &sa on,and xand baselementsinthedomainandrangeof .Theoperator A*A + rtr isthenabounded invertibleoperator.R

10、elationtosingularvaluedecompositionandWienerfilterWith r =a thisleastsquaressolutioncanbeanalyzedinaspecialwayvia the.GiventhesingularvaluedecompositionofAA = UYVtwithsingularvalues theTikhonovregularizedsolutioncanbeexpressedas = VDUrbwhere hasdiagonalvaluesandiszeroelsewhere.Thisdemonstratestheeff

11、ectoftheTikhonovparameter onthe oftheregularizedproblem.Forthegeneralizedcaseasimilar representationcanbederivedusinga.Finally,itisrelatedtothe:wheretheWienerweightsaref = !and Qistheof A.iDetermination of the Tikhonov factorTheoptimalregularizationparameter aisusuallyunknownandofteninpracticalprobl

12、emsisdeterminedbyanadhocmethod.Apossibleapproach reliesontheBayesianinterpretationdescribedabove.Otherapproachesinclude the, and. provedthattheoptimalparameter,inthesenseof minimizes: where H S Sisthe and Tistheeffectivenumber.八 RSSG =T 2XfcXTTXTUsingthepreviousSVDdecomposition,wecansimplifytheabove

13、expression:andRSS =i=1RSS=RSS0i=1b 2 + a 2 i ii=1it= m-E, E a 2 .b2 +a2 = m q + ZjbTZOIi=1 ii=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofan introduces(whenalluncertaintiesareGaussian)acovariancematrix representingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrix

14、 Drepresentingtheuncertaintieson theobservedparameters(see,forinstance,Tarantola,2004).Inthespecialcase whenthesetwomatricesarediagonalandisotropic, .:/and :,and,inthiscase,theequationsofinversetheoryreducetothe equationsabove,with a= D / M.HistoryTikhonovregularizationhasbeeninventedindependentlyin

15、manydifferent contexts.Itbecamewidelyknownfromitsapplicationtointegralequationsfrom theworkof andD.L.Phillips.Someauthorsusetheterm Tikhonov-Phillips regularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,who tookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa- filter.Followin

16、gHoerl,itisknowninthestatisticalliteratureas ridge regression.QReferences(1943).O6ycTO访quBOCTuo6paTHbix3agaqOnthestabilityofinverse problems. 39(5):195 -198.Tychonoff,A.N.(1963). OpemeHuuHeKoppeKTHonocraB刀eHHbix3agaq uMeTogepery刀月pu3auuuSolutionofincorrectlyformulatedproblems andtheregularizationmet

17、hod. DokladyAkademiiNaukSSSR 151: 501-504.Translatedin SovietMathematics 4:1035 -1038.Tychonoff,A.N.;V.Y.Arsenin(1977). Solutionoflll-posedProblems . Washington:Winston&Sons. .Hansen,.,1998, Rank-deficientandDiscreteill-posedproblems ,SIAMHoerlAE,1962, Applicationofridgeanalysistoregressionproblems , ChemicalEngineeringProgress,58,54-59.FosterM,1961, AnapplicationoftheWiener-Kolmogorovsmoothing theorytomatrixinversion J.SIAM,9,387-392PhillipsDL,1962

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论