2022年湖北省黄石市下陆区中考数学最后冲刺模拟试卷含解析_第1页
2022年湖北省黄石市下陆区中考数学最后冲刺模拟试卷含解析_第2页
2022年湖北省黄石市下陆区中考数学最后冲刺模拟试卷含解析_第3页
2022年湖北省黄石市下陆区中考数学最后冲刺模拟试卷含解析_第4页
2022年湖北省黄石市下陆区中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个交点,

2、且它们均在轴同侧D无交点2如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD3如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶设x(s)后两车相距y (m),y与x的函数关系如图2所示有以下结论:图1中a的值为500;乙车的速度为35 m/s;图1中线段EF应表示为;图2中函数图象与x轴交点的横坐标为1其中所有的正确结论是( )ABCD4某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )人数3421分数80859

3、095A85和82.5B85.5和85C85和85D85.5和805如图,一段抛物线:y=x(x5)(0 x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180得C2, 交x轴于点A2;将C2绕点A2旋转180得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D66按如图所示的方法折纸,下面结论正确的个数( )290;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个7如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个

4、结论:;GDE=45;DG=DE在以上4个结论中,正确的共有( )个A1个B2 个C3 个D4个8如图,O的直径AB=2,C是弧AB的中点,AE,BE分别平分BAC和ABC,以E为圆心,AE为半径作扇形EAB,取3,则阴影部分的面积为()A4B74C6D9若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )ABCD10根据天津市北大港湿地自然保护总体规划(20172025),2018年将建立养殖业退出补偿机制,生态补水78000000m1将78000000用科学记数法表示应为()A780105 B78106 C7.8107 D0.78108二、填空题(共7小题,每小题

5、3分,满分21分)11如图,ABC中,AB5,AC6,将ABC翻折,使得点A落到边BC上的点A处,折痕分别交边AB、AC于点E,点F,如果AFAB,那么BE_12如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD100,AE200,AB40,AC20,BC30,则通过计算可得DE长为_13瑞士的一位中学教师巴尔末从光谱数据,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门请你根据这个规律写出第9个数_14为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2

6、个120分,1个100分,1个80分则这组数据的中位数为_分15某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_16(2016辽宁省沈阳市)如图,在RtABC中,A=90,AB=AC,BC=20,DE是ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O若OMN是直角三角形,则DO的长是_17如图,将边长为的正方形ABCD绕点A逆时针方向旋转30后得到正方形ABCD,则图中阴影部分面积为_平方单位三、解答题(共7小题,满分69分)18(10分)正方形ABCD的边长是10,点E是AB的中点,动点F

7、在边BC上,且不与点B、C重合,将EBF沿EF折叠,得到EBF(1)如图1,连接AB若AEB为等边三角形,则BEF等于多少度在运动过程中,线段AB与EF有何位置关系?请证明你的结论(2)如图2,连接CB,求CBF周长的最小值(3)如图3,连接并延长BB,交AC于点P,当BB6时,求PB的长度19(5分)解不等式组:并把解集在数轴上表示出来.20(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条

8、直线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 21(10分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F求证:ADEBFE;若DF平分ADC,连接CE试判断CE和DF的位置关系,并说明理由22(10分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方

9、法,写出小明所编题目的证明过程.23(12分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为(1)当时,求四边形的面积;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标24(14分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,

10、BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题

11、,只需学生熟练掌握抛物线的对称性,即可完成.2、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.3、A【解析】分析:根据图象2得出结论; 根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; 根据图1,线段的和与差可表示EF的长;利用待定系数法求直线的解析式,令y=0可得结论.详解:y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;由题意得:7

12、520+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;图1中:EF=a+20 x-vx=500+20 x-25x=500-5x.故此选项不正确;设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.4、B【解析】根据众数及平均数的定义,即可得出答案.【详解】解:这组数据中85出现的次数最多,故

13、众数是85;平均数= (803+854+902+951)=85.5.故选:B.【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.5、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由20175=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180得C2,交x轴于点A2;将C2绕点A2旋转180得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=

14、A2A3=OA1=5,抛物线C404的解析式为y=(x5403)(x5404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键6、C【解析】1+1=2,1+1+2=180,1+1=2=90,故正确;1+1=2,1AEC.故不正确;1+1=90,1+BAE=90,1=BAE,又BC,ABEECF.故,正确;故选C.7、C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,A=GFD=90,于是根据“HL”判定ADGFDG,再由GF+GB

15、=GA+GB=12,EB=EF,BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得GDE=45,再抓住BEF是等腰三角形,而GED显然不是等腰三角形,判断是错误的【详解】由折叠可知,DF=DC=DA,DFE=C=90,DFG=A=90,ADGFDG,正确;正方形边长是12,BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12x)2,解得:x=4AG=GF=4,BG=8,BG=2AG,正确;ADGFDG,DCEDFE,ADG=FDG,FDE=CDEGDE=45.正确; BE

16、=EF=6,BEF是等腰三角形,易知GED不是等腰三角形,错误;正确说法是故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度8、A【解析】O的直径AB=2,C=90,C是弧AB的中点,AC=BC,CAB=CBA=45,AE,BE分别平分BAC和ABC,EAB=EBA=22.5,AEB=180 (BAC+CBA)=135,连接EO,EAB=EBA,EA=EB,OA=OB,EOAB,EO为RtABC内切圆半径,SABC=(AB+AC+BC)EO=ACBC,EO=1,AE2=AO2+EO2=12+(1)2=42,扇形EAB的面积=,AB

17、E的面积=ABEO=1,弓形AB的面积=扇形EAB的面积ABE的面积=,阴影部分的面积=O的面积弓形AB的面积=()=4,故选:A.9、D【解析】甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【详解】解:由于函数的图像经过点,则有 图象过第二、四象限,k=-1,一次函数y=x-1,图象经过第一、三、四象限,故选:D【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;10、C【解析】科学记数法记数时,主要是准确把握标准形式a10n即可.【详解】解:78000000= 7.810

18、7.故选C.【点睛】科学记数法的形式是a10n,其中1a10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.二、填空题(共7小题,每小题3分,满分21分)11、【解析】设BEx,则AE5xAFAF,CF6(5x)1+x,依据ACFBCA,可得,即,进而得到BE【详解】解:如图,由折叠可得,AFEAFE,AFAB,AEFAFE,AEFAFE,AEAF,由折叠可得,AFAF,设BEx,则AE5xAFAF,CF6(5x)1+x,AFAB,ACFBCA,即,解得x,BE,故答案为:【点睛】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后

19、图形的形状和大小不变,对应边和对应角相等12、1【解析】先根据相似三角形的判定得出ABCAED,再利用相似三角形的性质解答即可【详解】 又A=A,ABCAED, BC=30,DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.13、【解析】分子的规律依次是:32,42,52,62,72,82,92,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45,即分子为(n+2)2,分母为n(n+4)【详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=6

20、0;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1因而第九个数是:故答案为:【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律14、1【解析】13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,第7个数是1分,中位数为1分,故答案为115、4cm【解析】由题意知ODAB,交AB于点C,由垂径定理可得出BC的长,在RtOBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论【详解】由题意知ODAB,交A

21、B于点E,AB=16cm,BC=AB=16=8cm,在RtOBE中,OB=10cm,BC=8cm,OC=(cm),CD=OD-OC=10-6=4(cm)故答案为4cm【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键16、或【解析】由图可知,在OMN中,OMN的度数是一个定值,且OMN不为直角. 故当ONM=90或MON=90时,OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当ONM=90时,则DNBC.过点E作EFBC,垂足为F.(如图)在RtABC中,A=90,AB=AC,C=45,BC=20,在RtABC中,DE是ABC的中

22、位线,在RtCFE中,.BM=3,BC=20,FC=5,MF=BC-BM-FC=20-3-5=12.EF=5,MF=12,在RtMFE中,DE是ABC的中位线,BC=20,DEBC,DEM=EMF,即DEO=EMF,在RtODE中,.(2) 当MON=90时,则DNME.过点E作EFBC,垂足为F.(如图)EF=5,MF=12,在RtMFE中,在RtMFE中,DEO=EMF,DE=10,在RtDOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角

23、三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.17、62【解析】由旋转角BAB=30,可知DAB=9030=60;设BC和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形S四边形ABOD,计算面积即可【详解】解:设BC和CD的交点是O,连接OA,AD=AB,AO=AO,D=B=90,RtADORtABO,OAD=OAB=30,OD=OB= ,S四边形ABOD=2SAOD=2=2,S阴影部分=S正方形S四边形ABOD=62【点睛】此题的重点是能够计算出四边形的面积注意发现全等三角形三、解答题(共7小题,满分69分)18、(1)BEF

24、60;A BEF,证明见解析;(2)CBF周长的最小值5+5;(3)PB【解析】(1)当AEB为等边三角形时,AE B60,由折叠可得,BEF BE B 12060;依据AEBE,可得EA BE BA,再根据BEFBEF,即可得到BEFBA B,进而得出EFA B;(2)由折叠可得,CF+ BFCF+BFBC10,依据BE+ BCCE,可得BCCEBE55,进而得到BC最小值为55,故CBF周长的最小值10+555+5;(3)将ABB和APB分别沿AB、AC翻折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90,MN90,AMAN,可得四边形AMQN为正方形,设PBPNx,则B

25、P6+x,BQ862,QP8x依据BQP90,可得方程22+(8x)2(6+x)2,即可得出PB的长度【详解】(1)当AE B为等边三角形时,AE B60,由折叠可得,BEFBE B12060,故答案为60;A BEF,证明:点E是AB的中点,AEBE,由折叠可得BEBE,AEBE,EA BE BA,又BEFBEF,BEFBA B,EFA B;(2)如图,点B的轨迹为半圆,由折叠可得,BFBF,CF+ BFCF+BFBC10,BE+ BCCE,BCCEBE55,BC最小值为55,CBF周长的最小值10+555+5;(3)如图,连接A B,易得A BB90,将AB B和AP B分别沿AB、AC翻

26、折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90,MN90,AMAN,可得四边形AMQN为正方形,由AB10,B B6,可得A B8,QMQNA B8,设P BPNx,则BP6+x,BQ862,QP8xBQP90,22+(8x)2(6+x)2,解得:x,P Bx【点睛】本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案19、不等式组的解集为7x1,将解集表示在数轴上表示见解析.【解

27、析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来试题解析:由得:2x2,即x1,由得:4x25x+5,即x7,所以7x1在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集点睛:分别求出各不等式的解集,再求出其公共解集即可不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“”,“”要用

28、空心圆点表示.20、(1)详见解析;(1)详见解析;BP=AB【解析】(1)根据要求画出图形即可;(1)连接BD,如图1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45,推出NQC=90,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,

29、1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQACP,DQ=PB,AQN=APC=45,AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴21、(1)见解析;(1)见解析【解析】(1)由全等三角形的判定定理AAS证得结论(1)由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论