2021-2022学年陕西省兴平市华兴中学中考数学模拟精编试卷含解析_第1页
2021-2022学年陕西省兴平市华兴中学中考数学模拟精编试卷含解析_第2页
2021-2022学年陕西省兴平市华兴中学中考数学模拟精编试卷含解析_第3页
2021-2022学年陕西省兴平市华兴中学中考数学模拟精编试卷含解析_第4页
2021-2022学年陕西省兴平市华兴中学中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,ABC内接于O,BC为直径,AB=8,A

2、C=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )A3:1B4:1C5:2D7:22在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份3如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D114如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD5根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个交点,且它们均在轴同侧D无交点6我国古代数学家刘徽创立的“割圆术”可以估算圆周

3、率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD7九章算术是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )ABCD8下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平

4、分的四边形是平行四边形9分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx710已知是一个单位向量,、是非零向量,那么下列等式正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 12如图,AB=AC,要使ABEACD,应添加的条件是 (添加一个条件即可)13如果,那么=_14在反比例函数图象的每一支上,y随x的增大而_用“增大”或“减小”填空15分解因式:8x-8xy+2y= _ .16如果xy5,那么代数式的值是_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,二

5、次函数yx2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的表达式;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使PDF与ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由18(8分)如图,RtABC的两直角边AC边长为4,BC边长为3,它的内切圆为O,O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求O的半

6、径长;(2)求线段DG的长19(8分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30,看这栋楼底部C处的俯角为60,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC20(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上(1)画出将ABC绕点B按逆时针方向旋转90后所得到的A1BC1;(2)画出将ABC向右平移6个单位后得到的A2B2C2;(3)在(1)中,求在旋转过程中ABC扫过的面积21(8分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点

7、,连结DE,作DFDE,交OA于点F,连结EF已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒如图1,当t=3时,求DF的长如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tanDEF的值连结AD,当AD将DEF分成的两部分的面积之比为1:2时,求相应的t的值22(10分)如图,在RtABC中,点在边上,点为垂足,DAB=450,tanB=.(1)求的长;(2)求的余弦值23(12分)我国古代数学著作增删算法统宗记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:

8、现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺求绳索长和竿长24先化简,再求值:,其中m是方程x22x30的根参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】利用垂径定理的推论得出DOAB,AF=BF,进而得出DF的长和DEFCEA,再利用相似三角形的性质求出即可【详解】连接DO,交AB于点F,D是的中点,DOAB,AF=BF,AB=8,AF=BF=4,FO是ABC的中位线,ACDO,BC为直径,AB=8,AC=6,BC=10,FO=AC=1,DO=5,DF=5-1=2,ACDO,DEFCEA,=1故选:A【点睛】此题主要考查了

9、垂径定理的推论以及相似三角形的判定与性质,根据已知得出DEFCEA是解题关键2、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B3、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360,根据题意得:110(n-2)=3360解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决4、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个

10、小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图5、B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.6、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积

11、为S6=611sin60=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答7、C【解析】根据题意相等关系:8人数-3=物品价值,7人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.8、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;

12、、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大9、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.10、B【解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解【详解】A. 由于单位向量只限制长度,不确定

13、方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.二、填空题(本大题共6个小题,每小题3分,共18分)11、53【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2102=10(cm),因此圆锥的底面半径为102=5(cm),因此圆锥的高为:102-52=53(cm)考点:圆锥的计算12、AE=AD(答案不唯一)【解析】要使ABEACD,已知AB=AC,A=A,则可以添加AE=AD,利用SAS

14、来判定其全等;或添加B=C,利用ASA来判定其全等;或添加AEB=ADC,利用AAS来判定其全等等(答案不唯一)13、【解析】试题解析: 设a=2t,b=3t, 故答案为:14、减小【解析】根据反比例函数的性质,依据比例系数k的符号即可确定【详解】k=20,y随x的增大而减小故答案是:减小【点睛】本题考查了反比例函数的性质,反比例函数y=(k0)的图象是双曲线,当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大15、1【解析】提取公因式1,再对余下的多项式利用完全平方公式继续分解完全平方公

15、式:a11ab+b1=(ab)1【详解】8x1-8xy+1y=1(4x1-4xy+y)=1(1x-y)1故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解16、1【解析】先将分式化简,然后将x+y=1代入即可求出答案【详解】当xy1时,原式xy1,故答案为:1【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.三、解答题(共8题,共72分)17、 (1) yx23x+4;(2)当时,S有最大值;(3)点P的横坐标为2或1或或.【解析】(1)将代入,列方程组求出b、c的值即可;(2)连接

16、PD,作轴交于点G,求出直线的解析式为,设,则,当时,S有最大值;(3)过点P作轴,设,则,根据,列出关于x的方程,解之即可【详解】解:(1)将、代入, ,二次函数的表达式;(2)连接,作轴交于点,如图所示在中,令y0,得,直线AD的解析式为设,则,当时,S有最大值(3)过点P作轴,设,则,即 ,当点P在y轴右侧时,或,(舍去)或(舍去),当点P在y轴左侧时,x0,或,(舍去),或(舍去), 综上所述,存在点F,使与互余点P的横坐标为或或或【点睛】本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键18、 (1) 1;(2)【解析】(1)由勾股定

17、理求AB,设O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GPAC,垂足为P,根据CG平分直角ACB可知PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由RtAGPRtABC,利用相似比求x,由OG=CG-CO求OG,在RtODG中,由勾股定理求DG试题解析:(1)在RtABC中,由勾股定理得AB=5,O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GPAC,垂足为P,设GP=x,由ACB=90,CG平分ACB,得GCP=45,GP=PC=x,RtAGPRtABC,=,解得x=,即GP=,CG=,OG=CG-CO=-=,在RtODG中

18、,DG=.19、这栋楼的高度BC是米【解析】试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长试题解析:解:,AD100, 在Rt中, 在Rt中,. 点睛:本题考查解直角三角形的应用仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系20、(1)(1)如图所示见解析;(3)4+1【解析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据ABC扫过的面积等于扇形BCC1的面积与A1BC1的面积和,列式进行计算即可【详解】(1)如图所示,A

19、1BC1即为所求;(1)如图所示,A1B1C1即为所求;(3)由题可得,ABC扫过的面积=4+1【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积21、(1)3;(2)DEF的大小不变,tanDEF=;(3)或【解析】(1)当t=3时,点E为AB的中点,A(8,0),C(0,6),OA=8,OC=6,点D为OB的中点,DEOA,DE=OA=4,四边形OABC是矩形,OAAB,DEAB,OAB=DEA=90,又DFDE,EDF=90,四边形DFAE是矩形,DF=AE=3;(2)DEF的大

20、小不变;理由如下:作DMOA于M,DNAB于N,如图2所示:四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90,DMAB,DNOA,, ,点D为OB的中点,M、N分别是OA、AB的中点,DM=AB=3,DN=OA=4,EDF=90,FDM=EDN,又DMF=DNE=90,DMFDNE,EDF=90,tanDEF=;(3)作DMOA于M,DNAB于N,若AD将DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;当点E到达中点之前时,如图3所示,NE=3t,由DMFDNE得:MF=(3t),AF=4+MF=t+,点G为EF的三等分点,G(,),设直线AD的解

21、析式为y=kx+b,把A(8,0),D(4,3)代入得: ,解得: ,直线AD的解析式为y=x+6,把G(,)代入得:t=;当点E越过中点之后,如图4所示,NE=t3,由DMFDNE得:MF=(t3),AF=4MF=t+,点G为EF的三等分点,G(,),代入直线AD的解析式y=x+6得:t=;综上所述,当AD将DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.22、 (1)3;(2) 【解析】分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可; (2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论