2022年河北省唐山市丰润区中考试题猜想数学试卷含解析_第1页
2022年河北省唐山市丰润区中考试题猜想数学试卷含解析_第2页
2022年河北省唐山市丰润区中考试题猜想数学试卷含解析_第3页
2022年河北省唐山市丰润区中考试题猜想数学试卷含解析_第4页
2022年河北省唐山市丰润区中考试题猜想数学试卷含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在已知的 ABC中,按以下步骤作图:分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;作直线MN交AB于点D,连接CD,则下列结论正确的是()ACD+DB=ABBCD+AD=ABCCD+AC=ABDAD+AC=AB2正

2、三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A30B60C120D1803计算5x23x2的结果是( )A2x2B3x2C8x2D8x24如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm5的相反数是()AB-CD-6下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()ABCD74的平方根是()A2B2C8D88如图,在平面直角坐标系xOy中,点A(1,0),B(2,0

3、),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2017,)C(2018,)D(2018,0)9函数y=的自变量x的取值范围是( )Ax2Bx2Cx2Dx210反比例函数y=1-6tx的图象与直线y=x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )At16 Bt16 Ct16 Dt1611用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )ABCD12如图,四边形ABCD中,ADBC,

4、B=90,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD2二、填空题:(本大题共6个小题,每小题4分,共24分)13已知正比例函数的图像经过点M(-2 , 1)、Ax1,y1、Bx2,y2,如果x1x2,那么y1_y2(填“”、“”、“”)14在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1x2+y1y2=0,那么与互相垂直,下列四组向量:=(2,1),=(1,2);=(cos30,tan45),=(1,sin

5、60);=(,2),=(+,);=(0,2),=(2,1)其中互相垂直的是_(填上所有正确答案的符号)15在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标_.16如图,在ABC中,A=70,B=50,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若EFC为直角三角形,则BDF的度数为_17在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=x2上有一动线段AB,当P点坐标为_时,PAB的面积最小18如图,在直角三角形ABC中,ACB=90,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形AB

6、C组成的图形)分成两部分,则这两部分面积之差的绝对值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的直径,点C为O上一点,经过C作CDAB于点D,CF是O的切线,过点A作AECF于E,连接AC(1)求证:AE=AD(2)若AE=3,CD=4,求AB的长20(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表组别分数段频次频率A60 x70170.17B70 x8030aC80 x90b0.45D90

7、 x10080.08请根据所给信息,解答以下问题:(1)表中a=_,b=_;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率21(6分)如图,AB为O的直径,点C,D在O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E(1)求证:EF是O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长22(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30.

8、操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长23(8分)如图所示,内接于圆O,于D;(1)如图1,当AB为直径,求证:;(2)如图2,当AB

9、为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,求CF的长度24(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上 (1)b =_,c =_,点B的坐标为_;(直接填写结果)(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最

10、短时,求出点P的坐标25(10分)计算:|+(2017)02sin30+3126(12分)如图1,已知抛物线y=x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DHx轴于点H,过点A作AEAC交DH的延长线于点E(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当CPF的周长最小时,MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的CFP沿直线AE平移得到CFP,将CFP沿CP翻折得到CPF,记在平移过称中,直线FP与x轴交于点K,则是否存

11、在这样的点K,使得FFK为等腰三角形?若存在求出OK的值;若不存在,说明理由27(12分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:根据以上定义,解决下列问题:已知点P(3,-2)若点A(-2,-1),则d(P,A)= ;若点B(b,2),且d(P,B)=5,则b= ;已知点C(m,n)是直线上的一个动点,且d(P,C)【解析】分析:根据正比例函数的图象经过点M(1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题详解:设该正比例函数的解析式为y=kx,则1=1

12、k,得:k=0.5,y=0.5x正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1x1,y1y1故答案为点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答14、【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:2(1)+12=0,与垂直; 与不垂直. 与垂直. 与垂直.故答案为:.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15、(写出一个即可)【解析】【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可【详解】设P(x,y),根据题意,得|x|=2,|y|=1,即x=2,y

13、=1,则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键16、110或50【解析】由内角和定理得出C=60,根据翻折变换的性质知DFE=A=70,再分EFC=90和FEC=90两种情况,先求出DFC度数,继而由BDF=DFCB可得答案【详解】ABC中,A=70、B=50,C=180AB=60,由翻折性质知DFE=A=70,分两种情况讨论:当EFC=90时,DF

14、C=DFE+EFC=160,则BDF=DFCB=110;当FEC=90时,EFC=180FECC=30,DFC=DFE+EFC=100,BDF=DFCB=50;综上:BDF的度数为110或50故答案为110或50【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键17、(-1,2)【解析】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,

15、切点即为P点,设平移后的直线为y=-x-2+b,直线y=-x-2+b与抛物线y=x2+x+2相切,x2+x+2=-x-2+b,即x2+2x+4-b=0,则=4-4(4-b)=0,b=3,平移后的直线为y=-x+1,解得x=-1,y=2,P点坐标为(-1,2),故答案为(-1,2)【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键18、4【解析】连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍【详解】解:连接OP、OB,图形BAP的面积=AOB的面积+BOP的面积+扇形OAP

16、的面积,图形BCP的面积=BOC的面积+扇形OCP的面积BOP的面积,又点P是半圆弧AC的中点,OA=OC,扇形OAP的面积=扇形OCP的面积,AOB的面积=BOC的面积,两部分面积之差的绝对值是 点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2) 【解析】(1)连接OC,根据垂直定义和切线性质定理证出CAECAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cosEAC=,cosCAB=,EAC=CA

17、B,得=.【详解】(1)证明:连接OC,如图所示,CDAB,AECF,AEC=ADC=90,CF是圆O的切线,COCF,即ECO=90,AEOC,EAC=ACO,OA=OC,CAO=ACO,EAC=CAO,在CAE和CAD中,CAECAD(AAS),AE=AD;(2)解:连接CB,如图所示,CAECAD,AE=3,AD=AE=3,在RtACD中,AD=3,CD=4,根据勾股定理得:AC=5,在RtAEC中,cosEAC=,AB为直径,ACB=90,cosCAB=,EAC=CAB,=,即AB=【点睛】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直

18、角三角形性质得到相应等式.20、(1)0.3 ,45;(2)108;(3)【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为170.17=100(人),则a=0.3,b=1000.45=45(人)故答案为0.3,45;(2)3600.3=108答:扇形统计图中B组对应扇形的圆心角为108(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:共有12种等可能的情况,甲、乙两名同学都被选中的情况有

19、2种,甲、乙两名同学都被选中的概率为=【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)证明见解析(2)【解析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OCAE,得到OCEF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明AECACB,根据相似三角形的性质列出比例式,计算即可【详解】(1)证明:连接OC,OA=OC,OCA=BAC,点C是的中点,EAC=BAC,EAC=OCA,OCAE,AEEF,OCEF,即EF是O的

20、切线;(2)解:AB为O的直径,BCA=90,AC=4,EAC=BAC,AEC=ACB=90,AECACB,AE=【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键22、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CDE=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF

21、=EMC=90,B =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,

22、BF1=DF1,F1BD=ABC=30,F1DB=90,F1DF1=ABC=20,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20,点D是角平分线上一点,DBC=DCB=20=30,BG=BC=,BD=3CDF1=180-BCD=180-30=150,CDF1=320-150-20=150,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20,点D是角平分线上一点,DEAB,DBC=BDE=ABD=20=30,又BD=3,BE=3cos30=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长

23、为3或223、(1)见解析;(2)成立;(3)【解析】(1)根据圆周角定理求出ACB=90,求出ADC=90,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出BOC=2A,求出OBC=90-A和ACD=90-A即可;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交O于N,连接CN、AN,求出关于a的方程,再求出a即可【详解】(1)证明:AB为直径,于D,;(2)成立,证明:连接OC,由圆周角定理得:,;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,根据圆周角定理得:,由三角形内角和定理得:,同理,在AD上取,

24、延长CG交AK于M,则,延长KO交O于N,连接CN、AN,则,四边形CGAN是平行四边形,作于T,则T为CK的中点,O为KN的中点,由勾股定理得:,作直径HS,连接KS,由勾股定理得:,设,解得:,【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大24、(1),(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,

25、P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标【详解】解:(1)将点A和点C的坐标代入抛物线的解析式得:,解得:b=2,c=1,抛物线的解析式为令,解得:,点B的坐标为(1,0)故答案为2;1;(1,0)(2)存在理由:如图所示:当ACP1=90由(1)可知点A的坐标为(1,0)设AC的解析式为y=kx1将点A的坐标代入得1k1=0,解得k=1,直线AC的解析式为y=x1,直

26、线CP1的解析式为y=x1将y=x1与联立解得,(舍去),点P1的坐标为(1,4)当P2AC=90时设AP2的解析式为y=x+b将x=1,y=0代入得:1+b=0,解得b=1,直线AP2的解析式为y=x+1将y=x+1与联立解得=2,=1(舍去),点P2的坐标为(2,5)综上所述,P的坐标是(1,4)或(2,5)(1)如图2所示:连接OD由题意可知,四边形OFDE是矩形,则OD=EF根据垂线段最短,可得当ODAC时,OD最短,即EF最短由(1)可知,在RtAOC中,OC=OA=1,ODAC,D是AC的中点又DFOC,DF=OC=,点P的纵坐标是,解得:x=,当EF最短时,点P的坐标是:(,)或

27、(,)25、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12+=点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键26、 (1)2 ;(2) ;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得ACOEAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于

28、点F,交DE于点P,即G、F、P、N四点共线时,CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m+m+),则Q(m,m-),根据SMFP=SMQF+SMQP,得出SMFP= -m+m+,根据解析式即可求得,MPF面积的最大值;(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出CFP为等边三角形,边长为,翻折之后形成边长为的菱形CFPF,且FF=4,然后分三种情况讨论求得即可本题解析:(1)对于抛物线y=x2+x+,令x=0,得y=,即C(0,),D(2,),DH=,令y=0,即x2+x+=0,得x1=1,x2=3,A(1,0),B(3,0),AEAC,EHAH,ACOEAH,=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论