




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个多边形的边数由原来的3增加到n时(n3,且n为正整数),它的外角和()A增加(n2)180B减小(n2)180C增加(n1)180D没有改变2|3|的值是( )A3BC3D3计算2a23a2的结果是( )A5a4B6a2C6a4D5a24将一副三角尺(在中,在中,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )ABCD5已知x=23,则代数式(7+43)x2+(2+3)x+ 3 的值是()A0B3C2+3D236若抛物线yx23x+c与y轴的交点为(0,2),则下列说法正
3、确的是()A抛物线开口向下B抛物线与x轴的交点为(1,0),(3,0)C当x1时,y有最大值为0D抛物线的对称轴是直线x7如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D88如图是几何体的三视图,该几何体是( )A圆锥B圆柱C三棱柱D三棱锥9已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=1213反比例函数y=kx在第一象限图象经过点A,与BC交于点FSAOF=392,则k=()A15B13C12D510小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加
4、2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1若小昱在某页写的数为101,则阿帆在该页写的数为何?()A350B351C356D358二、填空题(共7小题,每小题3分,满分21分)11有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_12已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b2的解集为_13将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_14如图,点G是的重心
5、,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为_15在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_16如图,已知ABCD,=_17如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 . 三、解答题(共7小题,满分69分)18(10分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方
6、程组的解为坐标的点在第四象限的概率为_19(5分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m旗杆DB的长度为2m,DB与墙面AB的夹角DBG为35当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离(结果精确到0.1m参考数据:sin350.57,cos350.82,tan350.70)20(8分)如图,经过原点的抛物线y=x2+2mx(m0)与x轴的另一个交点为A,过点P(1,m)作直线PAx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(点B、C不
7、重合),连接CB、CP(I)当m=3时,求点A的坐标及BC的长;(II)当m1时,连接CA,若CACP,求m的值;(III)过点P作PEPC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标21(10分)如图,AB是O的直径,弦DE交AB于点F,O的切线BC与AD的延长线交于点C,连接AE(1)试判断AED与C的数量关系,并说明理由;(2)若AD=3,C=60,点E是半圆AB的中点,则线段AE的长为 22(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(3,0),B(0,3),C(1,0)(1)求此抛物线的解析式(2)点P是
8、直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PDAB于点D动点P在什么位置时,PDE的周长最大,求出此时P点的坐标23(12分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90,ADC=60,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90,ABC=135,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 24(14分)如图,在ABC中,BD平分ABC,AEBD于点O,交BC于点
9、E,ADBC,连接CD(1)求证:AOEO;(2)若AE是ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据多边形的外角和等于360,与边数无关即可解答.【详解】多边形的外角和等于360,与边数无关,一个多边形的边数由3增加到n时,其外角度数的和还是360,保持不变故选D【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360是解题的关键.2、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相
10、反数.3、D【解析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a23a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.4、C【解析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则ACD=A=30,BCD=B=60,由于EDF=90,可利用互余得CPD=60,再根据旋转的性质得PDM=CDN=,于是可判断PDMCDN,得到=,然后
11、在RtPCD中利用正切的定义得到tanPCD=tan30=,于是可得=【详解】点D为斜边AB的中点,CD=AD=DB,ACD=A=30,BCD=B=60,EDF=90,CPD=60,MPD=NCD,EDF绕点D顺时针方向旋转(060),PDM=CDN=,PDMCDN,=,在RtPCD中,tanPCD=tan30=,=tan30=故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了相似三角形的判定与性质5、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=23时,(7+43)x2
12、+(2+3)x+ 3(7+43)(23)2+(2+3)(23)+ 3(7+43)(7-43)+1+ 349-48+1+32+3故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算6、D【解析】A、由a=10,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确综上即可得出结论【详解】解:
13、A、a=10,抛物线开口向上,A选项错误;B、抛物线y=x1-3x+c与y轴的交点为(0,1),c=1,抛物线的解析式为y=x1-3x+1当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、抛物线开口向上,y无最大值,C选项错误;D、抛物线的解析式为y=x1-3x+1,抛物线的对称轴为直线x=-=-=,D选项正确故选D【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键7、D【解析】连接OA,构建直角
14、三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度8、C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案详解:几何体的主视图和左视图都是长方形,故该几何体是
15、一个柱体,又俯视图是一个三角形,故该几何体是一个三棱柱,故选C点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定9、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=1213,AM=OAsinAOB=1213a,OM=513a,点A
16、的坐标为(513a,1213a)四边形OACB是菱形,SAOF=392,12OBAM=392,即12a1213a=39,解得a=132,而a0,a=132,即A(52,6),点A在反比例函数y=kx的图象上,k=526=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=12S菱形OBCA10、B【解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个
17、数为101,根据题意得:101=1+(n-1)2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)1=1+501=1+350=2故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:故答案为
18、【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等12、x1【解析】试题分析:根据题意得当x1时,ax+b2,即不等式ax+b2的解集为x1故答案为x1考点: 一次函数与一元一次不等式13、y=3x-1【解析】y=3x+1的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x114、2【解析】分析:由点G是ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GEBC,可证得AEGACD,然后由相似三角形的对应边成比例,即可求得线段GE的长详解:点G是ABC重心,BC=6,CD=BC=3,AG:AD=2:3,G
19、EBC,AEGADC,GE:CD=AG:AD=2:3,GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.15、1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案解:设黄球的个数为x个,根据题意得:=2/3解得:x=1黄球的个数为116、85【解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180,EFC=C,=180ABF+C=180120+25=85故答案为85.17、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的
20、几何意义,可知k=6,反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),点E在抛物线上,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义三、解答题(共7小题,满分69分)18、 【解析】解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.【详解】,得 若b2a, 即a=2,3,4,5,6 b=4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b2a, 符合条件的数组有(1,1)共有1个,概率p=.故答案为:.【点睛】本题主要考查了古典概率及其概率计算公式的应
21、用.19、(1)1m(1)1.5 m【解析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1) 分别做DMAB,ENAB,DHEN,垂足分别为点M、N、H,利用sinDBM=及cosDEH=,可求出EH,HN即可得出答案.【详解】解:(1)在RtDEF中,由题意知ED=1.6 m,BD=1 m,DF=1答:DF长为1m(1)分别做DMAB,ENAB,DHEN,垂足分别为点M、N、H,在RtDBM中,sinDBM=,DM=1sin351.2EDC=CNB,DCE=NCB,EDC=CBN=35,在RtDEH中,cosDEH=,EH=1.6cos351.3EN=EH+H
22、N=1.3+1.2=1.451.5m答:E点离墙面AB的最远距离为1.5 m【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。20、(I)4;(II) (III)(2,0)或(0,4)【解析】(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如图,利用PMECBP得到PM
23、=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PHy轴于H,如图,利用PHEPBC得到PH=PB=m-1,HE=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE得到E点坐标【详解】解:(I)当m=3时,抛物线解析式为y=x2+6x,当y=0时,x2+6x=0,解得x1=0,x2=6,则A(6,0),抛物线的对称轴为直线x=3,P(1,3),B(1,5),点B关于抛物线对称轴的对称点为CC(5,5),BC=51=4;(II)当y=0时,x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),B
24、(1,2m1),点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,C(2m1,2m1),PCPA,PC2+AC2=PA2,(2m2)2+(m1)2+12+(2m1)2=(2m1)2+m2,整理得2m25m+3=0,解得m1=1,m2=,即m的值为;(III)如图,PEPC,PE=PC,PMECBP,PM=BC=2m2,ME=BP=2m1m=m1,而P(1,m)2m2=m,解得m=2,ME=m1=1,E(2,0);作PHy轴于H,如图,易得PHEPBC,PH=PB=m1,HE=BC=2m2,而P(1,m)m1=1,解得m=2,HE=2m2=2,E(0,4);综上所述,m的值为2,点
25、E的坐标为(2,0)或(0,4)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式21、(1)AED=C,理由见解析;(2) 【解析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可【详解】(1)AED=C,证明如下:连接BD,可得ADB=90,C+DBC=90,CB是O的切线,CBA=90,ABD+DBC=90,ABD=C,AEB=ABD,AED=C,(2)连接BE,AEB=90,C=60,CAB=30,在RtDAB中,AD=3,ADB=9
26、0,cosDAB=,解得:AB=2,E是半圆AB的中点,AE=BE,AEB=90,BAE=45,在RtAEB中,AB=2,ADB=90,cosEAB=,解得:AE=故答案为【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法22、(1)y=x22x+1;(2)( ,)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明AOB是等腰直角三角形,得出BAO=45,再证明PDE是等腰直角三角形,则PE越大,PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,PDE的周长也最大将x=-代入-x2-2x+1,进而得到P点的坐标【详解】解:(1)抛物线y=ax2+bx+c经过点A(1,0),B(0,1),C(1,0),解得,抛物线的解析式为y=x22x+1;(2)A(1,0),B(0,1),OA=OB=1,AOB是等腰直角三角形,BAO=45PFx轴,AEF=9045=45,又PDAB,P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专利技术许可合同
- 夏令营活动协议夏令营合同
- 杭州地铁考试题库及答案
- 人力服务资源外包合同
- 指纹锁销售合同1
- 开关插座订货合同
- 住建委房屋买卖合同
- 人工挖孔桩工程劳务合同
- 三年级下册道德与法治教学设计-1.5关心集体 第二课时 桂师星球版001
- 尉氏县电梯安全管理人员实操考题合集及答案
- 劳动节英文介绍节日由来文化风俗劳动名言课件
- 10.2 阿基米德原理 课件 2023-2024学年人教版八年级物理
- 成人癫痫持续状态护理专家共识2023
- 数字金融与经济高质量发展:理论分析与实证检验
- 《免疫学检验》课程标准(含课程思政)
- 网络安全的前沿技术与趋势
- DB21-T 3135-2019菲律宾蛤仔浅海底播增殖技术规范
- 非车险销售培训课件
- VTE评估及护理预防
- 《往复活塞式压缩机》课件
- 半夏泻心汤抑制原发性肝细胞癌术后复发的临床应用研究演示稿件
评论
0/150
提交评论