




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知两点都在反比例函数图象上,当时, ,则的取值范围是( )ABCD2从中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()ABCD3在平面直角坐标系中,点是线段上一点,以
2、原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )AB或CD或4已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )A20B30C40D505如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()ABCD6从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其
3、裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )ABCD7函数在同一直角坐标系内的图象大致是()ABCD8学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表: 得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3则得分的众数和中位数分别为()A70分,70分B80分,80分C70分,80分D80分,70分9若二次函数的图像与轴有两个交点,则实数的取值范围是( )ABCD10如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错
4、误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=11“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()ABCD12某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,24二
5、、填空题:(本大题共6个小题,每小题4分,共24分)13已知x+y=,xy=,则x2y+xy2的值为_.14如图1,在ABC中,ACB90,BC2,A30,点E,F分别是线段BC,AC的中点,连结EF(1)线段BE与AF的位置关系是 , (2)如图2,当CEF绕点C顺时针旋转a时(0a180),连结AF,BE,(1)中的结论是否仍然成立如果成立,请证明;如果不成立,请说明理由(3)如图3,当CEF绕点C顺时针旋转a时(0a180),延长FC交AB于点D,如果AD62,求旋转角a的度数15将一张长方形纸片折叠成如图所示的形状,若DBC=56,则1=_16点A(3,y1),B(2,y2),C(3,
6、y3)在抛物线y=2x24x+c上,则y1,y2,y3的大小关系是_17如图,矩形ABCD中,E为BC的中点,将ABE沿直线AE折叠时点B落在点F处,连接FC,若DAF18,则DCF_度18如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案(1)请聪明的你将下面图、图、图的等边三角形分别割成2个、3个、4个全等三角形;(2)如图,等边ABC边长AB4,点O为它的外心,点M、N分别为边AB、BC上的
7、动点(不与端点重合),且MON120,若四边形BMON的面积为s,它的周长记为l,求最小值;(3)如图,等边ABC的边长AB4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且PDQ120,若PAx,请用含x的代数式表示BDQ的面积SBDQ20(6分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,
8、设移动时间为t秒,当PAC为等腰三角形时,直接写出t的值21(6分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;AHB (2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且ACBECF30时,(1)中的结论是否仍然成立,并说明理由(3)拓展延伸在(2)的条件下,若BC9,FC6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离22(8分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发
9、布的2018年“春节”假日旅游市场总结分析报告中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到 万人次,比2017年春节假日增加 万人次(2)2018年2月15日20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.5682.83119.5184.38103.2151.55这组数据的中位数是 万人次(3)根据
10、图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为 ,理由是 (4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同)正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率23(8分)观察下列各式:由此归纳出一般规律_.24(10分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答
11、以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值25(10分)九章算术中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题26(12分)如图,
12、AB为O的直径,D为O上一点,以AD为斜边作ADC,使C=90,CAD=DAB求证:DC是O的切线;若AB=9,AD=6,求DC的长27(12分)如图,AB是O的直径,点E是上的一点,DBC=BED求证:BC是O的切线;已知AD=3,CD=2,求BC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据反比例函数的性质判断即可【详解】解:当x1x20时,y1y2,在每个象限y随x的增大而增大,k0,故选:B【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质2、C【解析】根据正方形的判定定理即可
13、得到结论【详解】与左边图形拼成一个正方形,正确的选择为,故选C【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.3、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k4、A【解析】分析:根据白球的频率稳定在0.
14、4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得: ,计算得出:n=20,故选A.点睛:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.5、B【解析】根据题意,在实验中有3个阶段,、铁块在液面以下,液面得高度不变;、铁块的一部分露出液面,但未完全露出时,液面高度降低;、铁块在液面以上,完全露出时,液面高度又维持不变;分析可得,B符合描述;故选B6、D【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式【详解】阴影部分的面积相等,即甲的面积=a2b2,乙的面积=
15、(a+b)(ab)即:a2b2=(a+b)(ab)所以验证成立的公式为:a2b2=(a+b)(ab)故选:D【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质7、C【解析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C8、C【解析】解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两
16、个的平均数为80分,故中位数为80分故选C【点睛】本题考查数据分析9、D【解析】由抛物线与x轴有两个交点可得出=b2-4ac0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围【详解】抛物线y=x2-2x+m与x轴有两个交点,=b2-4ac=(-2)2-41m0,即4-4m0,解得:m1故选D【点睛】本题考查了抛物线与x轴的交点,牢记“当=b2-4ac0时,抛物线与x轴有2个交点”是解题的关键10、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故
17、B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,符合题意【详解】A.ADBC,AEFCBF, ,故A正确,不符合题意;B. 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题
18、意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.11、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量工作效率结合提前 30 天完成任务,即可得出关于x的分式方程详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即故选C点睛:考查了由实际问题抽象出分式方程找到关键描述语,找到合适的等量关系是解决问题的关键12、A【解析】【分析】根据众数和中位数的定义进行求解即可得【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从
19、小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、3 【解析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2xy(x+y)=3.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.14、(1)互相垂直;(2)结论仍然成立,证明见解析;(3)135【解析
20、】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出BECAFC,进而得出1=2,即可得出答案;(3)过点D作DHBC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出DCA=45,进而得出答案【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;ACB=90,BC=2,A=30,AC=2,点E,F分别是线段BC,AC的中点,=;(2)如图2,点E,F分别是线段BC,AC的中点,EC=BC,FC=AC,BCE=ACF=,BECAFC,1=2,延长BE交AC于点O,交AF于点MBOC=AOM,1=2BCO=AM
21、O=90BEAF;(3)如图3,ACB=90,BC=2,A=30AB=4,B=60过点D作DHBC于HDB=4-(6-2)=2-2,BH=-1,DH=3-,又CH=2-(-1)=3-,CH=BH,HCD=45,DCA=45,=180-45=13515、62【解析】根据折叠的性质得出2=ABD,利用平角的定义解答即可【详解】解:如图所示:由折叠可得:2=ABD,DBC=56,2+ABD+56=180,解得:2=62,AE/BC,1=2=62,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出2=ABD是关键16、y2y3y1【解析】把点的坐标分别代入抛物线解
22、析式可分别求得y1、y2、y3的值,比较可求得答案【详解】y=2x2-4x+c,当x=-3时,y1=2(-3)2-4(-3)+c=30+c,当x=2时,y2=222-42+c=c,当x=3时,y3=232-43+c=6+c,c6+c30+c,y2y3y1,故答案为y2y3y1【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键17、1【解析】由折叠的性质得:FEBE,FAEBAE,AEBAEF,求出BAEFAE1,由直角三角形的性质得出AEFAEB54,求出CEF72,求出FECE,由等腰三角形的性质求出ECF54,即可得出DCF的度数【详解】解:四
23、边形ABCD是矩形,BADBBCD90,由折叠的性质得:FEBE,FAEBAE,AEBAEF,DAF18,BAEFAE(9018)1,AEFAEB90154,CEF18025472,E为BC的中点,BECE,FECE,ECF(18072)54,DCF90ECF1.故答案为1【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出ECF的度数是解题的关键18、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120,根据四边形内角和360,得到ABG+ADG=180此时再延长GB至K,使AK=
24、AG,构造出等边AGK易证ABKADG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在RtDBH中利用勾股定理及三角函数知识得到EBG的正切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键三、解答题:(本大
25、题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)2+2;(3)SBDQx+【解析】(1)根据要求利用全等三角形的判定和性质画出图形即可(2)如图中,作OEAB于E,OFBC于F,连接OB证明OEMOFN(ASA),推出EMFN,ONOM,SEOMSNOF,推出S四边形BMONS四边形BEOF定值,证明RtOBERtOBF(HL),推出BM+BNBE+EM+BFFN2BE定值,推出欲求最小值,只要求出l的最小值,因为lBM+BN+ON+OM定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OMON,根据垂线段最短可知,当OM与OE重合时,O
26、M定值最小,由此即可解决问题(3)如图中,连接AD,作DEAB于E,DFAC于F证明PDFQDE(ASA),即可解决问题【详解】解:(1)如图1,作一边上的中线可分割成2个全等三角形,如图2,连接外心和各顶点的线段可分割成3个全等三角形,如图3,连接各边的中点可分割成4个全等三角形,(2)如图中,作OEAB于E,OFBC于F,连接OBABC是等边三角形,O是外心,OB平分ABC,ABC60OEAB,OFBC,OEOF,OEBOFB90,EOF+EBF180,EOFNOM120,EOMFON,OEMOFN(ASA),EMFN,ONOM,SEOMSNOF,S四边形BMONS四边形BEOF定值,OB
27、OB,OEOF,OEBOFB90,RtOBERtOBF(HL),BEBF,BM+BNBE+EM+BFFN2BE定值,欲求最小值,只要求出l的最小值,lBM+BN+ON+OM定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,OMON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,此时定值最小,s2,l2+2+4+,的最小值2+2 (3)如图中,连接AD,作DEAB于E,DFAC于FABC是等边三角形,BDDC,AD平分BAC,DEAB,DFAC,DEDF,DEADEQAFD90,EAF+EDF180,EAF60,EDFPDQ120,PDFQDE,PDFQDE(ASA),PFEQ,
28、在RtDCF中,DC2,C60,DFC90,CFCD1,DF,同法可得:BE1,DEDF,AFACCF413,PAx,PFEQ3+x,BQEQBE2+x,SBDQBQDE(2+x)x+【点睛】本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。20、(1)a=;(2)1n2;(3)满足条件的时间t为1s,2s,或(3+)或(3)s【解析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而
29、求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值试题解析:(1)、解:点C是直线l1:y=x+1与轴的交点, C(0,1),点C在直线l2上, b=1, 直线l2的解析式为y=ax+1, 点B在直线l2上,2a+1=0, a=;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0, x=1,由图象知,点Q在点A,B之间, 1n2(3)、解:如图,PAC是等腰三角形, 点x轴正半轴上时,当AC=P1C时,COx轴, OP1=OA=1, BP1=OBOP1=21=1, 11=1s,当P2A=P2C时,易知点
30、P2与O重合, BP2=OB=2, 21=2s,点P在x轴负半轴时,AP3=AC, A(1,0),C(0,1), AC=, AP3=,BP3=OB+OA+AP3=3+或BP3=OB+OAAP3=3,(3+)1=(3+)s,或(3)1=(3 )s,即:满足条件的时间t为1s,2s,或(3+)或(3)s点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案21、(1),45;(2)不成立,理由见
31、解析;(3) .【解析】(1)由正方形的性质,可得 ,ACBGEC45,求得CAECBF,由相似三角形的性质得到,CAB45,又因为CBA90,所以AHB45.(2)由矩形的性质,及ACBECF30,得到CAECBF,由相似三角形的性质可得CAECBF,,则CAB60,又因为CBA90,求得AHB30,故不成立.(3)分两种情况讨论:作BMAE于M,因为A、E、F三点共线,及AFB30,AFC90,进而求得AC和EF ,根据勾股定理求得AF,则AEAFEF,再由(2)得: ,所以BF33,故BM .如图3所示:作BMAE于M,由A、E、F三点共线,得:AE6+2,BF3+3,则BM.【详解】解
32、:(1)如图1所示:四边形ABCD和EFCG均为正方形, ,ACBGEC45, ACEBCF,CAECBF,CAECBF,CABCAE+EABCBF+EAB45,CBA90,AHB180904545,故答案为,45; (2)不成立;理由如下:四边形ABCD和EFCG均为矩形,且ACBECF30,ACEBCF,CAECBF,CAECBF,,CABCAE+EABCBF+EAB60,CBA90,AHB180906030;(3)分两种情况:如图2所示:作BMAE于M,当A、E、F三点共线时,由(2)得:AFB30,AFC90,在RtABC和RtCEF中,ACBECF30,AC,EFCFtan306 2
33、 ,在RtACF中,AF ,AEAFEF6 2,由(2)得: ,BF (62)33,在BFM中,AFB30,BMBF ;如图3所示:作BMAE于M,当A、E、F三点共线时,同(2)得:AE6+2,BF3+3,则BMBF;综上所述,当A、E、F三点共线时,点B到直线AE的距离为 【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.22、(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4) 【解析】(1)由图1可得答案;(
34、2)根据中位数的定义求解可得;(3)由近3年平均涨幅在30%左右即可做出估计;(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得【详解】(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45951.05=414.4万人次故答案为:1365.45、414.4;(2)这组数据的中位数是=93.79万人次,故答案为:93.79;(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,故答案为:30%;近3年平均涨幅在30
35、%左右,估计2019年比2018年同比增长约30%(4)画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体23、xn+1-1【解析】试题分析:观察其右边的结果:第一个是1;第二个是1;依此类推,则第n个的结果即可求得试题解析:(x1)(+x+1)=故答案为.考点:平方差公式24、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30 x(1x+1)=(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论